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We propose and analyze a family of information processing systems, where a finite set of experts or servers

are employed to extract information about a stream of incoming jobs. Each job is associated with a hidden

label drawn from some prior distribution. An inspection by an expert produces a noisy outcome that depends

both on the job’s hidden label and the type of the expert, and occupies the expert for a finite time duration.

A decision maker’s task is to dynamically assign inspections so that the resulting outcomes can be used to

accurately recover the labels of all jobs, while keeping the system stable. Among our chief motivations are

applications in crowd-sourcing, diagnostics, and experiment designs, where one wishes to efficiently learn the

nature of a large number of items, using a finite pool of computational resources or human agents.

We focus on the capacity of such an information processing system. Given a level of accuracy guarantee, we

ask how many experts are needed in order to stabilize the system, and through what inspection architecture.

Our main result provides an adaptive inspection policy that is asymptotically optimal in the following sense:

the ratio between the required number of experts under our policy and the theoretical optimal converges to

one, as the probability of error in label recovery, δ, tends to zero. *
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1. Introduction

An increasing number of modern processing systems has been designed and deployed for the pur-

pose of learning and information extraction. In these applications, which we refer to broadly as

information processing systems, a group of experts or servers is tasked with performing (noisy)

inspections on a large collection of jobs, with the objective of uncovering some hidden features

associated with each job up to a level of desirable accuracy. Below are some examples:

1. Crowd-sourcing (Karger et al. (2014)): a collection of images is dispatched to a group of human

agents, where an agent attaches a label to each assigned image based on her own judgment. A

decision maker then aggregates agents’ responses to produce a “best” label for each image.

2. Medical diagnostics (Gerdtz and Bucknall (2001)): medical data of patients is reviewed by

physicians or nurses with different domains of expertise, with the goal of correctly identifying

the patients’ diseases.

*This version: May 15, 2016. An extended abstract of this paper is accepted for presentation at the Conference on

Learning Theory (COLT) 2016. We are grateful for the comments from the anonymous COLT referees.
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3. Quality management (Baker and von Beers (1996)): a set of products undergoes a number of

different tests performed by specialized machines, to identify whether a product is faulty and

the type of fault it contains.

The presence of resource constraints is a crucial feature shared across many of these systems:

the amount of processing resources, such as human agents, machines, or computer servers, is finite,

and yet, each inspection or test requires the corresponding resource to commit a non-trivial amount

of effort. This raises a natural question:

How much information can we extract using a finite amount of processing resources?

The main objective of the present paper is to address this question, and gain understanding of

the “capacity” of an information processing system. We will approach this problem by studying

the minimum required system size, defined, roughly speaking, as the minimum number of experts

needed in order to learn a sufficient amount of information about every job in a stream of arrivals,

while ensuring system stability. 1

We now informally describe our model. The system consists of m experts with different types

(expertise), where the fraction of experts of type k is ρk. The system receives a stream of incoming

jobs arriving at unit rate, where each job is associated with a label, hidden from the decision maker,

which is drawn i.i.d. from some prior distribution, π. An atomic unit of processing is called an

inspection: the decision maker may assign an expert to perform an inspection on a job, which

occupies the expert for a random period of time, with a mean that depends on the type of the

expert. The inspection leads to a (noisy) outcome, whose distribution, p(k,h, ·), depends on both

the type of the expert, k, and the true label of the job under inspection, h. The goal of the decision

maker is to assign inspections intelligently, and use the resulting outcomes to produce, for each job,

a classification (i.e., prediction) of its hidden label. We say that the system is stable if all jobs will

receive a classification in a finite amount of time.

Note that we cannot have a meaningful discussion on the resource requirement of this system

without specifying how accurate the classifications need to be. Indeed, in the absence of any accu-

racy constraint, the decision maker can simply make up classifications without performing a single

inspection, and the system would always be trivially stable. Therefore, we will designate an accuracy

parameter, δ ∈ (0,1), and demand that the probability of mis-classification for each job be at most

δ. Since inspections take up the experts’ bandwidth, we expect that a smaller δ would demand more

inspections, which, in turn, require more experts.

The main goal of this paper is to understand the minimum number of experts needed for a given

accuracy parameter, δ, and how to achieve it via intelligent policies. This definition of minimum

1 Throughout the paper, we will use the term “expert” to refer to a single unit of processing resource, with the under-
standing that it may represent a computer server, testing machine, or human agent, depending on the application.
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system size is motivated by the intuition that a decision policy that requires the least number of

experts to stabilize the system also, in a sense, most efficiently utilizes the processing resources.

Preview of main result. The main result of this paper proposes an inspection architecture

which, for any non-trivial outcome distributions, asymptotically achieves the minimum system size

in the regime of high accuracy (δ→ 0). Specifically, the ratio between the required number of experts

under our policy, m, and that of a theoretical minimum, m∗, converges to 1 uniformly across all

prior distributions of job labels, as δ→ 0:

sup
π

m

m∗
= 1 +O

(√
ln ln(1/δ)

ln(1/δ)

)
, as δ→ 0. (1)

Moreover, the policy does not require knowing the prior distribution, π, but adapts to it automati-

cally.

We conclude this section by highlighting two main design challenges in creating an efficient deci-

sion policy for information processing systems. The first challenge arises from the fact that the

processing resources are often heterogeneous, a result of the variations in expertise, machine func-

tionality, or personal trait. In our model, this is captured by the fact that the outcomes distributions,

{p(h,k, ·)}h∈H,k∈K, may vary significantly depending on the type of the inspecting expert. A key

implication of such heterogeneity is that the decision policy must be sufficiently adaptive to a job’s

past inspection outcomes, because depending on what we “believe” the job’s label to be, some

combinations of expert types may be more efficient than others. For instance, consider a testing

system where job labels correspond to three domains that might have caused an error in a product:

{network, hardware, software}, and the experts are of two kinds:

1. General experts: they know a little about all domains, and produce noisy inspection outcomes.

2. Specialists: who have deep expertise in one of the three domains but know nothing about the

other two. Their inspections contribute strong signals towards confirming an error in their own

domain, but are otherwise non-informative if the job’s true label lies elsewhere.

Intuitively, a sensible decision policy for this setting should be adaptive: a job can be first inspected

by a few general experts to zone in on a possible domain, and depending on their opinions, the

job will then be sent to the corresponding specialists to further “confirm” the diagnosis, with some

small possibility of back-and-forth if the initial diagnosis had been incorrect. In contrast, sending a

job directly to a specialist at the beginning would risk the specialist being of the wrong kind, and

never sending a job to any specialist would overwhelm the generalists who can only provide limited

information per inspection; in both cases, there would be waste of processing resources.

The second challenge is more nuanced, and stems from the combined effect of the resource con-

straint and expert heterogeneity: the “optimal” course of inspections for an individual job does not
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only depend on the types of experts available, but also on the prior distribution governing the pro-

portions of labels among its fellow jobs. In other words, there will be contention among jobs as they

“compete” for the same processing resources. For instance, in the above-mentioned testing example,

suppose there emerges a disproportionately large fraction of jobs with the label “network”, while

the fraction of specialists in “network” remains fixed. In such a case, it is plausible that some of the

generalists may now need to be enlisted to provide assistance by performing more inspections on

these jobs than they would before. Therefore, the mixture of inspections that a job receives may

shift as the prior distribution changes, which shows that a good decision policy cannot be overly

centered around individual jobs, and must be aware of the overall arrival pattern.

1.1. Related Research

The present paper intersects with two main areas of research: statistics and dynamic resource alloca-

tion. Most related to our work is the literature on sequential hypothesis testing in statistics, dating

back to the seminal work of Wald (1945), which studies the problem of distinguishing hypotheses

of a distribution by sequentially drawing samples from it, with the objective of minimizing a com-

bined cost involving the number of samples and the resulting probability of error (see also Siegmund

(2013) and the references therein). Notably, Chernoff (1959) considers an important generalization

of Wald’s problem, where, instead of drawing samples from the same distribution and deciding

when to stop, the decision maker has the additional freedom to choose from multiple available

experiments, and the distribution of the experimental outcome depends on both the true hypothesis

and the type of the experiment. Chernoff identifies a dynamic testing policy that asymptotically

achieves the minimum sample complexity, and computes explicitly the leading factor via the solution

to a zero-sum game. The current paper draws inspiration from this literature, and especially the

multi-experiment version of Chernoff (1959). Yet, there are some key differences: while sequential

hypothesis testing aims to reduce the sample complexity associated with testing a single distribu-

tion, we are interested in performing tests for multiple jobs simultaneously using finite resources.

The resource constraint creates contention and coupling among the jobs, and as was alluded to in

Introduction, policies designed to minimize the sample complexity associated with testing a single

hypothesis do not easily extend to our problem.

Our work is also related to the literature on dynamic resource allocation, and particularly multi-

class, multi-server queueing networks (Harrison and López (1999), Talreja and Whitt (2008), Tsitsik-

lis and Xu (2015)). In our model the inspection outcomes may have different distributions depending

on the expert’s type and the job’s label, which is roughly analogous to a queueing network where

the service rate depends on the class of the server and the job being served. However, our system

differs from this literature in two major aspects. First, while in conventional processing systems jobs
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typically come with an exogenous service requirement, also referred to as workload or job size, in

our system a job’s service requirement is defined endogenously in relation to how much information

needs to be gathered in order to uncover its label. Second, in a queueing network the class of an

incoming job is typically known to the decision maker, while in our model the job labels are hidden,

and the very objective of processing is to uncover them.

There have also been a growing interest in the connections between information acquisition and

resource allocation Alizamir et al. (2013), Bimpikis and Markakis (2015), Johari et al. (2016),

Harrison and Sunar (2015), Retsef et al. (2015). They are similar to our work in spirit, but differ

in models and objectives. The authors of Alizamir et al. (2013) study a single-server queue where

the server decides on how many tests to perform on each job to reach a binary diagnosis, while

achieving an optimal delay-accuracy trade-off. The information structure in Alizamir et al. (2013)

is substantially more restricted than in our model: the tests are identical, and outcomes and job

types are binary; on the other hand, Alizamir et al. (2013) analyzes queueing delay which we do not

consider. The recent papers Johari et al. (2016), Bimpikis and Markakis (2015) study processing

systems with heterogeneous job and server types and capacitated processing resources, where, similar

to our model, it is important for the decision maker to learn about the job types in order to identify

the best processing scheme. These models differ from ours in that learning serves as a means towards

another objective, such as maximizing total rewards in Johari et al. (2016) or improving throughput

or delay in Bimpikis and Markakis (2015), Retsef et al. (2015), whereas information extraction is

the intrinsic purpose of processing in our problem.

On the technical end, we build on several existing techniques and ideas. To establish the stabil-

ity of our decision policy, which involves three interconnected stages, we will leverage a program

pioneered by Rybko and Stolyar (1992) and Dai (1995) in the context of queueing networks, which

approximates the system dynamics using a certain fluid limit, and subsequently uses a contrac-

tion property of the fluid limits to derive the stability of the original system. A sub-routine of our

inspection policy dynamically creates workload vectors by dynamically solving a linear program to

minimize the incremental change to a potential function, which is reminiscent of, and inspired by,

the family of max-weight scheduling policies (Tassiulas and Ephremides (1992)). Finally, to derive

upper and lower bounds on the probability of error under an inspection policy, we make elementary

uses of well-known techniques in probability theory and statistics, such as changes of measures and

concentration inequalities for martingales.

2. Model and Metrics
2.1. The Model

System primitives. The system evolves in continuous time, indexed by t ∈ R+. There is a stream

of jobs that arrives to the system according to a Poisson process with rate λ0 > 0. Without loss of
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generality, we assume that λ0 = 1, because one can simply scale the expressions of system size by

λ0 so that the results in the paper apply to other values of λ0 as well. We index jobs by the order in

which they arrive, and refer to the ith job that arrives to the system as job i. Job i is associated with

a label, Hi, which belongs to a finite set, H, whose cardinality is cH. The job labels are independent

and identically distributed according to a prior distribution, π = {πh}h∈H, with P(H1 = h) = πh,

and the labels are unknown to the decision maker. We assume all entries of π to be positive.

The system is equipped with m experts. Let E be the set of experts. Each expert is associated

with a type, k, from a finite set, K, with cardinality cK. The number of type-k experts is ρkm, k ∈K,

where ρk is the fraction of type-k experts in the system, with ρk > 0 and
∑

k∈K ρk = 1. We will refer

to {ρk}k∈K as the expert mixture.

Inspections and resource constraints. An expert can be called upon to perform an inspection of

any job in the system. At the end of an inspection, a random outcome is produced which takes

values in a finite set, X . We denote by Xi,j the outcome of the jth inspection performed on job i.

Suppose that the true label of job i is h, and that the jth inspection is performed by an expert of

type k, then Xi,j is a random variable distributed according to the outcome distribution, p(h,k, ·),

and is independent from all other parts of the system. Note that this implies also that an expert

may inspect a job multiple times, producing i.i.d. outcomes. The diversity in the set of outcome

distributions, {p(h,k, ·)}h∈H,k∈K, captures the possibility that experts of various types may have

different expertise. We assume the set of outcome distributions is known to the decision maker.

The pool of experts is resource constrained, in the sense that each individual expert can only

perform, on average, a finite number of inspections per unit time. Formally, at any time t, we assume

that each of the m experts can be in one of the two states: IDLE and BUSY, and all experts are

initialized in state IDLE. An IDLE expert of type k can be assigned to initiate an inspection of

a job currently in the system. Once the inspection starts, the expert enters the state BUSY for a

duration that is exponentially distributed with mean 1/µk, µk > 0, independent from the rest of the

system. We refer to {µk}k∈K as the inspection rates, since µk corresponds to the average number of

inspections that a type-k expert can perform in unit time. The expert returns to the IDLE state

once the inspection is completed. The inspections are non-preemptive, so that an expert cannot

start inspecting a different job before the previous inspection has been finished. We assume that

multiple experts are allowed to inspect the same job at the same time. The latter assumption is

motivated by applications where jobs, such as images or data files, can be duplicated at relatively

low costs or be accessible to multiple experts concurrently.
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Note that the inspection rate depends on the expert’s type but not the job’s hidden label. Similar

to the earlier assumption that the arrival rate λ0 = 1, without loss of generality, we assume that

{µk}k∈K is normalized so that the average inspection rate across different expert types is 1:2

µ
4
=
∑
k∈K

ρkµk = 1. (2)

Departure rule. At any time t, the system operator can choose to let a job depart from the system.

Upon job i’s departure from the system, the operator must produce a classification, Ĥi, representing

her belief of job i’s true label. We say that there is an error if the classification does not match the

true label, i.e., if Ĥi 6=Hi.

2.2. Conditions on Outcome Distributions

The set of outcome distributions, {p(h,k, ·)}h∈H,k∈K, plays a central role in our model, because the

job labels can only be differentiated via the inspection outcomes. In the present paper, we allow for

essentially any outcome distribution over X , with the exception of two conditions. Informally, we

assume that (1) all outcomes are “noisy”, so that no single outcome can distinguish between two job

labels with certainty, and (2) for any two job types, there exists at least one type of experts who

can distinguish them. Neither assumption leads to a severe loss of generality, as we explain shortly.

We now give formal definitions of the two conditions. In our regime of interest, where the target

classification error is small, it turns out that an important measure of the informativeness of an

inspection outcome is that of KL-divergence, defined as follows. Fix i, j ∈N, h, l in H, and k ∈ K,

denote by Zi,j(h, l, k) the likelihood associated with the jth inspection to job i done by a type-k

expert, as follows:

Zi,j(h, l, k) = ln
p(h,k,Xi,j)

p(l, k,Xi,j)
. (3)

The KL-divergence from the outcome distribution p(h,k, ·) to p(l, k, ·), denoted by D(h, l, k), is

defined by the expected value of Zi,j(h, l, k) conditional on the true label of job i being h:

D(h, l, k) =E
(
Z1,1(h, l, k)

∣∣H1 = h
)

=
∑
x∈X

p(h,k,x) ln
p(h,k,x)

p(l, k, x)
. (4)

Intuitively, the value of D(h, l, k) captures the ability of an expert of type k in telling apart whether

a job’s label is h versus l; a higher value of D(h, l, k) indicates that the expert’s inspection, on

average, provides stronger evidence that the true label of a job is more likely to be h than l.

We assume that the outcome distributions {p(h,k, ·)}h∈H,k∈K satisfy two conditions as follows,

expressed in terms of KL-divergence.

2 In particular, if µ 6= 1, then one can scale our results that concern the minimal system size by 1/µ.
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1. The outcome distributions should be sufficiently diverse so that accurate classifications are

possible. For any two distinct job labels, h, l ∈ H, we assume that there exists at least one

expert type, k, for whom the outcome distributions, p(h,k, ·) and p(l, k, ·), are non-identical.

This is equivalent to saying that there exists d> 0, such that

d= min
h,l∈H,h 6=l

max
k∈K

D(h, l, k)> 0. (5)

2. All KL-divergences should be finite, so that a single inspection cannot distinguish two job

labels with absolute certainty:

d= max
h,l∈H, h6=l
k∈K

D(h, l, k)<∞. (6)

We note that the above two conditions do not significantly restrict the outcome distributions. The

first condition is in fact necessary for the problem to be non-trivial, for otherwise one would not be

able to distinguish between jobs of labels h and l. The second condition requires all inspections to

be “noisy”, and it is a natural assumption in applications where the inspections have some intrinsic

variability, such as when inspections are performed by human agents, or by machines that are

subject to idiosyncratic noise.

3. An example of outcome distributions

For concreteness, we describe here a simple example of a family of outcome distributions. Con-

sider the case where a job is an image, containing one out of three possible animals, with H =

{cat,dog, rabbit}. There are three types of experts, with K = {1,2,3}, who are asked to perform

inspections leading to binary outcomes (e.g., “like” or “dislike”), with X = {0,1}. Fix p, q ∈ (0,1),

p 6= q. Denote by A and B the Bernoulli distribution with mean p and q, respectively. The outcome

distributions, p(h,k, ·), are given by the following matrix, where the column corresponds to the

labels and the row to the expert types:

A A B
A B A
B A A

. For instance, the entry (2,1) indicates that a

type-2 expert’s inspection of an image containing a ‘cat’ is distributed according to A. Note that the

outcomes are statistically identical when a type-1 expert inspects an image with a cat versus a dog,

but are different from the outcome when the image contains a rabbit. However, it is not difficult

to see that if we were to obtain many inspections from any two expert types, one could eventually

uncover the true label of an image. This example illustrates that for the overall processing system

to be effective, it is not necessary that a single expert be able to distinguish all job labels.
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3.1. Inspection Policies and Performance Metrics

Inspection policies. To facilitate our discussion, we now introduce the concept of an inspection

policy. An inspection policy, ψ, has access to the entire system state and all past history. At any

time t, it has the ability to: (1) let an IDLE expert initiate an inspection on a job; (2) let a job i

depart from the system, in which case the policy will have to produce a classification, Ĥi, for the

job’s label, Hi. In addition, the inspection policy can take as input the following parameters: (1)

the number of experts, m, the expert mixture, {ρk}k∈K, and the inspection rates, {µk}k∈K; (2) the

outcome distributions, {p(h,k, ·)}h∈H,k∈K; (3) an accuracy parameter, δ; (4) (potentially) the prior

distribution, π, of the job labels. An inspection policy that does not require the knowledge of the

prior distribution, π, is said to be prior-oblivious.

In our system, there are two main performance criteria for an inspection policy that are of interest.

First, we would like an inspection policy to accurately recover the true labels of all jobs, quantified

in the following definition.

Definition 3.1 (δ-accuracy) A policy is δ-accurate, if for all h ∈ H and i ∈ N, we have that

P(Ĥi 6= h
∣∣Hi = h)≤ δ.

That is, the resulting probability of misclassification on any job of type h is at most δ under a δ-

accurate policy. Since the fundamental task of our processing system is to recover job labels reliably,

we assume throughout the paper that an inspection policy should always be δ-accurate, where δ is

the accuracy parameter set by the decision maker.

In addition to accuracy, a second important benchmark is stability. That is, every job should be

able to depart from the system in a finite amount of time. Formally, denote by Q(t) the total number

of jobs in the system at time t. We say that the system is stable under an inspection policy, if the

resulting process {Q(t)}t∈R+
is positive recurrent. Compared to the definition of accuracy, the notion

of stability is more delicate, because whether an inspection policy can stabilize a system depends

on the relative magnitudes between the number of experts, m, and the accuracy requirement, δ:

because the inspections are noisy, as δ decreases, each job will require a larger number of inspections

to achieve a desired classification accuracy. Since the arrival rate of jobs is assumed to be fixed, this

further implies that the number of experts, m, must also grow accordingly.

Therefore, as alluded to in the Introduction, a natural way of assessing how efficient an inspection

policy is at stabilizing the system is to measure the minimum system size (i.e.,m) needed in order for

the system to be stable for a given accuracy target, δ. This inspires the following notion of resource

efficiency, where we compare the minimum system size required by an inspection policy against

that of a theoretical optimal, as follows. Fix an expert mixture, {ρk}k∈K, inspection rates, {µk}k∈K,
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and outcome distributions, {p(h,k, ·)}h∈H,k∈K. For a policy, ψ, definemψ(δ,π) as the smallest system

size required under ψ in order to ensure stability:

mψ(δ,π) = min{m∈N : given δ and π, a system with m experts is stable under ψ}. (7)

Given prior distribution π and δ > 0, we define m∗(δ,π) as the smallest system size for which there

exists a δ-accurate inspection policy that stabilizes the system. That is, m∗(δ,π) represents the

minimal amount of processing resources required to ensure stability under an “optimal” inspection

policy. The following definition serves as the main performance metric of this paper.

Definition 3.2 We say that an inspection policy, ψ, is resource efficient, if

limsup
δ→0

mψ(δ,π)

m∗(δ,π)
= 1, for all prior distribution, π. (8)

We say that ψ is strongly resource efficient, if the above convergence occurs uniformly over all

prior distributions:

limsup
δ→0

sup
π

mψ(δ,π)

m∗(δ,π)
= 1. (9)

4. Main Result
The main result of the current paper is the following theorem.

Theorem 4.1 Fix an expert mixture, {ρk}k∈K, inspection rates, {µk}k∈K, and outcome distribu-

tions, {p(h,k, ·)}h∈H,k∈K. There exists a prior-oblivious, strongly resource efficient inspection policy,

ψ. In particular, there exist c0, δ0 > 0, such that

sup
π

mψ(δ,π)

m∗(δ,π)
≤ 1 + c0

√
ln ln(1/δ)

ln(1/δ)
, ∀δ ∈ (0, δ0). (10)

We highlight two important features of the theorem. First, the inspection policy is strongly

resource efficient, which implies that its performance guarantee in comparison to the theoretical

optimal holds independently of the prior distribution. Second, the inspection policy is prior-oblivious

so that it can operate without any knowledge of the prior distribution of the job labels. This feature

is especially important for our problem, since knowing the prior distribution would have likely

required first learning the labels of the incoming jobs, which is the very task that we are trying

to solve! Moreover, because a prior-oblivious policy automatically adapts to any prior distribution,

it is also more robust if the prior distribution were to shift over time, a likely scenario for many

applications. We will provide in Section 6 a complete description of the strongly resource-efficient

inspection policy in Theorem 4.1, which is based on a three-stage architecture that first generates a

coarse label estimate for each job, and subsequently uses the majority of the processing resources to

verify the validity of the coarse estimates, in an adaptive manner. This policy also inspires a simple

heuristic algorithm, discussed in Appendix D, which can be much easier to implement in practice.
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5. Proof Overview and Preliminaries
5.1. The Main Ideas

The remainder of the paper is devoted to the proof of Theorem 4.1. Before delving into the details,

we will start by illustrating the main ideas of the proof. Our main goal is to design an inspection

architecture to extract information efficiently using a finite number of experts. We will break this

general problem further into three sub-problems, in the following order:

(a) What type of information is sufficient for making accurate classification decisions?

(b) How much information do we need to gather for an individual job, via inspections, in order to

produce an accurate classification of its label?

(c) How can we gather such information for all jobs simultaneously in a resource-efficient manner?

We now address each of the three points in order. For point (a), the following notion of cumulative

log-likelihood ratio, a concept widely used in statistics, will be central in quantifying information in

our problem. Fix i∈N and t∈R+. Denote by Ni,t the total number of inspections received by job i

by time t, and by Ki,j the type of the expert who performed the jth inspection on job i. For h and

l in H, we define the cumulative log-likelihood ratios for job i at time t as

Si,t(h, l) =

Ni,t∑
j=1

Zi,j(h, l,Ki,j) = ln

Ni,t∏
j=1

p(h,Ki,j,Xi,j)

p(l,Ki,j,Xi,j)

 , h, l ∈H, (11)

where Zi,j(h, l, k) is the log-likelihood ratio defined in Eq. (3). Intuitively, the fact that Si,t(h, l)> 0

implies that given the inspections and their outcomes up till time t, the label of job i is more likely

to be h than l, and such likelihood intensifies as the value of Si,t(h, l) increases. As we will see

in a moment, the set {Si,t(h, l)}h,l∈H serves as a summary statistic that is sufficient for producing

classifications for job i’s label.

Point (b) concerns the quantity of information needed to make an accurate classification. In light

of the preceding discussion, we could equally ask: at the time when a classification has to be made

about job i’s label, what conditions should {Si,t(h, l)}h,l∈H satisfy in order for the classification error

to be small? The next lemma provides such a sufficient condition. Define Ĥi,t as the maximum-

likelihood (ML) estimator for the true label of job i, Hi, given the inspections performed on job i

up till time t, i.e.,

Ĥi,t ∈ {h∈H : Si,t(h, l)≥ 0, ∀l 6= h}= arg max
h∈H

Ni,t∏
j=1

p(h,Ki,j,Xi,j), (12)

with ties broken arbitrarily3. We will denote by SFi (h, l) and ĤF
i the value of Si,t(h, l) and Ĥi,t at

the time when job i departs from the system, respectively. We have the following lemma, which is

a special case of a more general result, Lemma A.1, in Appendix A.4.

3 Note that the equality in the above equation follows from the definition: the most likely label is also the one that
is no less likely than any other labels.
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Lemma 5.1 Fix i∈N and x> 0. Denote by Gx the event:

Gx = {∃h′ ∈H, s.t. SFi (h′, l)≥ x, ∀l ∈H, l 6= h′}. (13)

We have that

P(ĤF
i 6= h , Gx

∣∣Hi = h)≤ cH exp(−x), ∀h∈H. (14)

Lemma 5.1 shows that if, for a large value of x, the event Gx occurs with high probability under

any job label, then the resulting probability of mis-classification must be small. This achievability

result is complemented by the following converse, which states that in order for any inspection policy

to be δ-accurate, the expected value of the cumulative log-likelihood ratio, E(Si(h, l)), must satisfy

a lower bound that is approximately ln(1/δ). The proof of the lemma utilizes a coupling argument

similar to that in Wald (1945) for establishing a lower bound on sample complexity in sequential

hypothesis testing, and is given in Appendix A.1.

Lemma 5.2 Fix δ ∈ (0,1). If an inspection policy is δ-accurate, then for all i∈N and h∈H,

E
(
SFi (h, l)

∣∣Hi = h
)
≥ (1− δ) ln

1− δ
δ
− e−1, ∀l ∈H\{h}. (15)

The preceding lemmas combined hence give us a more complete picture of the information require-

ment for accurate classification: it suffices that by the time a job i departs from the system, there

exists one label, h, whose cumulative log-likelihood ratio when compared against any other alter-

native label, l, is sufficiently large, i.e., Si,t(h, l) is at least ln(cH/δ) for all l 6= h (Lemma 5.1), and

this is essentially necessary (Lemma 5.2).

More importantly, the above discussion reveals a natural link from information need to service

requirement. While in a traditional processing system a job may come with a certain size, we can

think of a job in the information processing system as having a vector-valued service requirement:

for a job i with true label h, if we interpret the quantity Si,t(h, l) as the amount of “work” already

performed along the lth coordinate, then the job’s service requirement would be, roughly speaking,

that the work performed along all coordinates, l ∈H\{h}, should surpass ln(cH/δ).

This brings us to the last, and arguably most complex, sub-problem, (c): how do we satisfy

these service requirements in an efficient manner, and simultaneously for multiple jobs? Going back

to the definition of Si,t(h, l) in Eq. (11), we see that it can be written as the summation of the

Zi,j(h, l,Ki,j)’s. Notably, if job i has true label h, then E(Zi,1(h, l, k)) =D(h, l, k), where D(h, l, k)

is the KL-divergence defined in Eq. (4). In other words, one inspection performed by an expert of

type k contributes, in expectation, D(h, l, k) amount of “work” to Si,t(h, l). Viewing our processing

task from this angle reveals a resemblance with a certain multi-class multi-server queueing system,
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where jobs come in different classes (and in this case, labels), and the amount of work a server can

contribute to a job’s service requirement during a unit time period depends both on the server’s

type and the type of the job being treated.

Unfortunately, there remains a difficult yet fundamental obstacle that prevents us from directly

applying our understanding of multi-class queueing systems to designing inspection policies. The

above analogy makes it clear that some expert types may be more informative for a certain job label

than others, because the values of D(h, l, k) can vary across h, l, and k. Hence, to best harness the

processing power of the experts and satisfy the service requirements across all jobs, the inspections

should be arranged in a way that takes into account the types of experts performing the inspections

and the labels of jobs being inspected, for otherwise an expert could end up wasting her time

working on jobs that she has little expertise on. However, this brings us to a circular argument:

while efficient inspection beckons a policy to be aware of job labels, we simply do not know the job

labels, for otherwise there would have not been a need to perform any inspection to begin with!

5.1.1. Overview of the Inspection Policy Our inspection policy will make use of a three-

stage architecture to circumvent the above-mentioned “circular” logic, illustrated in Figure 1.

1. In the first stage (Preparation), the policy “boot-straps” each incoming job, by inspecting it

using randomly chosen experts with the goal of generating a coarse estimate of its true label.

2. In the second stage (Adaptive), the policy performs the majority of the inspections and in an

adaptive manner, with the main goal of verifying whether the coarse estimates are correct.

Most of the jobs with a correct coarse estimate will be able to obtain an accurate classification

by the end of the Adaptive stage and depart from the system.

3. The third stage (Residual) treats those jobs whose coarse estimates were erroneous to ensure

that they, too, will receive an accurate classification.

We will show that (1) the coarse estimates in the Preparation stage are sufficiently accurate so

that little resource is wasted in the Adaptive stage, and (2) the processing resources required in the

Preparation and Residual stages amount to only a small fraction of the total resources. Together,

they lead to the resource efficiency of our inspection policy.

We can also interpret the high-level structure of this three-stage architecture through a learning

versus verification dichotomy: all jobs are first inspected by some “generalists” (i.e., random experts)

to learn a coarse label estimate. The system then enlists the “specialists” to verify the validity of

these estimates to a high accuracy. If a coarse estimate is deemed incorrect by the “specialists”,

the job is then sent back to the “generalists” to perform learning thoroughly to reach an accurate

estimate, albeit in a less efficient manner.
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Figure 1 Overall architecture associated with the proposed inspection policy.

5.2. Proof Outline

We now provide a brief outline of the main steps of the proof. Expanding upon the informal discus-

sion in the previous subsection, we formally describe in Section 6 a prior-oblivious inspection policy

that will be used to achieve the scaling in Theorem 4.1. In Section 7, we build on Lemma 5.2 and

establish a lower bound on the number of experts that any δ-accurate policy must satisfy, which

is expressed in terms of a solution to a certain linear optimization problem. This lower bound will

serve as our performance benchmark of what an “optimal” inspection policy could achieve in terms

of minimum system size. In Sections 8 and 9, we establish a sufficient condition for the number of

experts under which the proposed policy would stabilize all three stages. In particular, Section 8

contains the most technical portion of our proof, which relies on a fluid model to analyze the joint

dynamics of the Preparation and Adaptive stages. We complete the proof of Theorem 4.1 in Section

10, in two steps. We first show that the proposed policy is δ-accurate, which, in light of Lemma

5.1, follows by construction in a straightforward manner. We then compare the sufficient condition

on the number of experts, established in Sections 8 and 9, to the lower bound in Section 7, and

demonstrate that the ratio between the two converges to 1 uniformly over all prior distributions for

the job labels. This completes the proof of Theorem 4.1.

6. Design of the Inspection Policy

We present in this section the inspection policy that we will use to prove Theorem 4.1. The main

job-flow of the policy consists of three stages: Preparation, Adaptive, and Residual, as is illustrated

in Figure 1. We begin by explaining some basic actions of the experts.

6.1. Randomized Expert Visits

We first introduce some notation. Define

rk = µkρk, k ∈K, (16)

and from the assumption in Eq. (2), we have that
∑

k∈K rk = µ= 1.. Because the lengths of inspec-

tions are exponentially distributed, rk is the probability that the next available expert is of type k

assuming that all experts are in BUSY in the present moment, and mrk is the average number of
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inspections that the pool of type-k experts can complete in unit time. Let d(h, l) be the average

KL-divergence for when a job is inspected by an expert whose type is randomly drawn according

to the distribution {rk}k∈K:
d(h, l) =

∑
k∈K

D(h, l, k)rk. (17)

Denote by da the minimum value among the d(h, l), da = minh,l∈H,h6=l d(h, l), and by z the maximum

log-likelihood ratio4

z = max
h,l∈H, k∈K

max
x:p(l,k,x)6=0

∣∣∣∣ln p(h,k,x)

p(l, k, x)

∣∣∣∣ . (18)

Finally, define the constant

ζ0 =
8z2 + 2da

d2a
. (19)

Expert visits. We say that an expert of type k goes on a vacation to mean that she starts processing

a “dummy” job and remains in state BUSY for a period of time that is exponentially distributed

with mean 1/µk. Suppose that an expert completes inspecting a previous job at time t, then she

will choose to visit one of the three stages, which means that the expert will either initiate an

inspection for a job in that stage, or go on a vacation, depending on the inspection rules which will

be specified in the next subsection. The choice of which stage to visit will be made by a simple

randomized rule, independent of the rest of the system: the expert visits the Preparation, Adaptive,

and Residual stage, with probability qP , qA, and qR, respectively, where

qP =
ζ0 ln ln(1/δ) + ln−1(1/δ)

m
, qR =

3cHζ0(1 + ln(4cH) ln−1(1/δ)) + 1

m
, (20)

qA =1− qP − qR, (21)

and we assume that the policy will be applied under a range of parameters where all expressions

above lie in the interval (0,1).

6.2. Multi-stage Inspection Policy

We now describe our inspection policy in detail, where the exposition for each stage is broken down

into three parts: (1) Workload: how many inspections need be completed on a job in each stage; (2)

Departure rules: where the job goes next; (3) Expert actions: how experts perform inspections.

6.2.1. Preparation Stage Every job that arrives to the system will first be processed in the

Preparation stage. The objective is to produce a coarse estimate of the job’s label using only a small

number of inspections, performed by random experts whose types are drawn according to {rk}k∈K.
The randomization in the expert types ensures that information is gained about the job’s true label

at a non-zero rate. The coarse label estimate will then be used to “bootstrap” processing in the

Adaptive stage to further enhance the classification accuracy.

4 The set X being finite ensures that z <∞.
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Workload. Every job will receive nP inspections in the Preparation stage, where

nP = ζ0 ln ln(1/δ). (22)

Departure rules. When a job has received the outcomes from all nP inspections, it departs from

the Preparation stage and enters the Adaptive stage.

Expert actions. Denote by W0(t) the total number of uninitiated inspections in the Preparation

stage at time t. An expert who visits the Preparation stage at time t will attempt to initiate an

inspection for a job in the Preparation stage in a first-come-first-serve fashion. If W0(t) = 0, then

the expert goes on a vacation.

6.2.2. Adaptive Stage The Adaptive stage is the “power-house” of the system that performs

the majority of all inspections. Its defining feature is that the number of inspections that a job

receives from each expert type will be decided adaptively depending both on the coarse label estimate

from the Preparation stage, and on the existing aggregate workload in the Adaptive stage. The main

objective of this stage is to verify the correctness of the coarse label estimates: most jobs with a

correct coarse estimate depart from the system after the Adaptive stage, while those with incorrect

coarse estimates are likely to be sent to the Residual stage for further processing.

Workload. The workload generation in this stage is more complex than that of the Preparation

stage. Upon arriving to the Adaptive stage, a job, i, is assigned a workload vector {Λi,k}k∈K, where
Λi,k is the number of inspections to be performed by experts of type k on job i during its stay in the

Adaptive stage. We will denote by Λi,k(t) the remaining number of inspections by experts of type

k at time t, defined by the difference between Λi,k and the number of inspections already initiated

by experts of type k for job i by time t. Denote by QA(t) the set of jobs in the Adaptive stage at

time t. We define the workload at expert pool k as

Wk(t) =
∑

i∈QA(t)

Λi,k(t), t∈R+. (23)

We will refer to W(·) = {Wk(·)}k∈K as the workload process.

We now explain how the workload vectors, {Λi,k}k∈K, are generated. Denote by ĤP
i the maximum

likelihood estimator of job i, Ĥi,t (Eq. (12)), at the time it exits the Preparation stage, and suppose

that ĤP
i = h. Let {nh,k}k∈K be an optimal solution to the following linear optimization problem:

minimize
∑
k∈K

nkWk(t), (24)

s.t.
∑
k∈K

D(h, l, k)nk ≥ ln(2cH/δ) + gδ, ∀l ∈H\{h}, (25)

nk ≥0, ∀k ∈K, (26)∑
k∈K

nk ≤vδ, (27)
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with ties broken arbitrarily, where gδ and vδ are two auxiliary constants that do not depend on h:

gδ =3zd−1/2
√

ln(1/δ) ln ln(1/δ) (28)

vδ =2d−1 ln(1/δ)
[
1 + (ln(2cH) + gδ) ln−1(1/δ)

]
. (29)

We will denote byNh the set of all vectors {nk}k∈K which satisfy the constraints in Eqs. (25) through

(27). One can verify that the above optimization problem always admits a feasible solution. Finally,

the workload vector for job i will be obtained by rounding down {nh,k}k∈K:

Λi,k = bnh,kc, ∀k ∈K. (30)

Interpretation of workload: The workload vector captures the combinations of inspections job

i should receive assuming that its true label is indeed ĤP
i , in which case Eq. (25) ensures that

the cumulative log-likelihoood ratios are sufficiently large to make an accurate classification. As

mentioned earlier, the optimization in Eq. (24) is reminiscent of the family of max-weight scheduling

policies (cf. Tassiulas and Ephremides (1992)): our policy aims to create workload in order to

minimize an inner-product between the new workload and the existing inspections. The proof in

subsequent sections will demonstrate that this adaptive procedure allows the inspection policy to

work well with any prior distribution, hence making the policy prior-oblivious.

Departure rules. A job i departs from the Adaptive stage as soon as it has received the outcomes

of all Λi,k inspections from experts of type k, for all k ∈ K. Suppose that the departure occurs at

time t. The policy then executes the following decision:

1. If there exists h∈H, such that

Si,t(h, l)≥ ln(2cH/δ), ∀l ∈H, l 6= h, (31)

then job i departs from the system, and a classification is produced by setting Ĥi = Ĥi,t = h.

2. Otherwise, job i enters the Residual stage.

Expert actions. Suppose that an expert of type k visits the Adaptive stage at time t ∈ R+. If

the workload for the kth expert pool, Wk(t), is non-zero (Eq. (23)), then the expert initiates an

inspection for a job associated with one unit of work in Wk(t), in a first-come-first-serve fashion. If

Wk(t) = 0, then the expert goes on a vacation.

6.2.3. Residual Stage The Residual stage acts as a “clearing house" that treats those jobs

whose inspections in the Adaptive stage failed to produce an accurate classification. Similar to

the Preparation stage, jobs are inspected by random experts, but they receive significantly more

inspections in the Residual stage in order to produce a highly accurate label classification.



Massoulie and Xu: On the Capacity of Information Processing Systems 18

Workload. The moment a job enters the Residual stage, all of its previous inspections and out-

comes are discarded. Similar to the Preparation stage, each job will receive a fixed number of

inspections, nR, where

nR = ζ0 ln(4cH/δ). (32)

Departure rules. A job i in the Residual stage departs from the system as soon as it has received

the results from all nR inspections, and a classification of job i’s type is produced by setting Ĥi =

Ĥi,t. Note that the classification is made solely based on the inspections in the Residual stage, as

we have discarded all inspections from the earlier stages.

Expert actions. An expert who visits the Residual stage will attempt to initiate an inspection

for a job in the Residual stage in a first-come-first-serve fashion. If there is no job currently in the

Residual stage, or if all jobs in the Residual stage have all of their nR inspections already initiated,

then the expert goes on a vacation. This concludes the description of our inspection policy.

7. Lower Bound on Optimal System Size

We establish in this section a fundamental lower bound on the minimum number of experts required

in order for the system to be stable that holds for any δ-accurate policy. The following Fundamental

Linear Program is central to this lower bound as well as our subsequent analysis.

Definition 7.1 The Fundamental Linear Program, denoted by FLP, is defined as follows.

minimize m (33)

s.t.
∑
h∈H

nh,kπh ≤ rkm, k ∈K, (34)∑
k∈K

nh,kD(h, l, k)≥ ln(1/δ), ∀h, l ∈H, h 6= l, (35)

nh,k ≥ 0, ∀h∈H, k ∈K, (36)

where D(h, l, k) and rk are defined in Eqs. (4) and (16), respectively.

We provide some intuition to motivate the above definition. Recall from Lemma 5.2 that in order

for any policy to be δ-accurate, for a job i with label h, the expected value of the cumulative

log-likelihood ratio Si,t(h, l) should be at least ln(1/δ) by the time job i departs from the system.

Furthermore, an inspection by an expert of type k increases the value of Si,t(h, l) by D(h, l, k)

in expectation. If we interpret the variables, nh,k, as the number of inspections a job with true

label h should receive from an expert of type k, then Eq. (34) in FLP corresponds to the resource

constraint of having mρk type-k experts, each of whom can perform µk inspections per unit time,

and Eq. (35) to the above-mentioned constraint on E(Si,j(h, l)) imposed by Lemma 5.2. Therefore,

FLP captures the problem of finding minimal system size faced by a decision maker who already
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knows the true labels of the jobs and is only interested in “verifying” them in order to satisfy the

condition of Lemma 5.2, and we would expect the optimal value of FLP to be a lower bound for

what is achievable in our problem, where the job labels are unknown.

The following proposition is the main result of this subsection, which states that the minimum

system size under any δ-accurate policy is essentially no smaller than the solution to FLP, as δ→ 0.

The proof builds upon the lower bound in Lemma 5.2, and is given in Appendix A.2.

Proposition 7.2 Fix δ ∈ (0,1) and π. Denote by m∗F the optimal value of FLP. We have that

m∗(δ,π)≥ bδ ·m∗F , (37)

where bδ = (1− δ)
[
1−

(
ln 1

1−δ + e−1
)

ln−1(1/δ)
]
. In particular, bδ ↑ 1 as δ ↓ 0.

The next lemma states some useful properties of FLP. The proof is given in Appendix A.3.

Lemma 7.3 There exists an optimal solution of FLP, (m∗F ,{n∗h,k}), such that the following holds:

d
−1 ≤ 1

ln(1/δ)

∑
k∈K

n∗h,k ≤ d−1, ∀h∈H, (38)

m∗F ≥d
−1

ln(1/δ). (39)

8. Stability of Preparation and Adaptive Stages

We establish in this section a sufficient condition on the number of experts, m, in order for the

Preparation and Adaptive stages to be jointly stable under the proposed inspection policy. An

analogous result for the Residual stage will be established in a subsequent section. We denote by

QP (t), QA(t) and QR(t) the number of jobs in the Preparation, Adaptive and Residual stages,

respectively, at time t. A stage being stable means that the process Q·(·) for that stage is positive

recurrent. The main result of this section is the following theorem.

Theorem 8.1 Define r= mink∈K rk = mink∈K ρkµk. The Preparation and Adaptive stages are stable

whenever mqP >nP = ζ0 ln ln(1/δ), and

mqA >

(
1 +

ln(2cH) + gδ
ln(1/δ)

)(
1 +

2c2
Hd

dr ln(1/δ)

)
m∗F , (40)

where m∗F is the optimal value of the Fundamental Linear Program in Definition 7.1.

Proof Overview for Theorem 8.1. The remainder of this section is devoted to the proof of

Theorem 8.1, and, unless stated otherwise, we will use the word “system” to refer to the Preparation

and Adaptive stages only. We begin by giving an overview of the proof and highlighting some of the

main technical challenges that motivate our approach.
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Let us first recall some high-level features of the system dynamics. The expert actions are fairly

simple in both stages by simply trying to initiate an inspection in a non-adaptive manner. Creating

inspection workloads is also straightforward for the Preparation stage where each job has a fixed

number of inspections. The main complexity therefore lies in how the vector-valued workloads are

created in the Adaptive stage, which depends both on the job’s type estimate from the Preparation

stage, and the aggregate workloads in the Adaptive stage. Given the disparity of complexity, a

natural approach would be to treat the two stages separately: the Preparation stage admits simpler

dynamics and is easy to analyze while the Adaptive could be tackled using the Foster-Lyapunov

criterion. Unfortunately, this approach falls short because the processing in the Preparation stage

destroys the memoryless property of the initial arrival process, rendering its output process non-

Markovian. Therefore, the Adaptive stage cannot be treated as an isolated Markov process without

taking into account the state of the Preparation stage as well.

To overcome this problem, we will model the dynamics in both stages jointly, and formulate a

set of fluid solutions, expressed as solutions to a system of ordinary differential equations (ODE),

to capture the essential dynamics of this joint process. Specifically, following a general program

developed by Rybko and Stolyar (1992), Dai (1995), we will show that, under proper scaling, the

process of system workloads converges almost surely to a set of fluid solutions. We then show that if

the number of experts satisfies the conditions stated in Theorem 8.1, then the fluid solutions exhibit

a certain global contraction property with respect to a one-homogeneous Lyapunov function. These

two properties will then be used to show that the original workload process is positive recurrent,

which in turn implies the stability of the system. The proof will be carried out in the following main

steps:

1. We define in Section 8.2 the Markov process that captures the system dynamics, as well as the

fluid solutions.

2. We show in Section 8.3 (Proposition 8.4) that the workload process converges to a fluid solution

almost surely over an appropriately defined probability space.

3. We establish the global contraction property of the fluid solutions in Section 8.4 (Proposition

8.11) by showing a multiplicative decay in a quadratic Lyapunov function along the trajectory

of any fluid solution.

4. Finally, we complete the proof in Section 8.5 by combining Propositions 8.4 (convergence)

and 8.11 (contraction) with a variant of the Foster-Lyapunov criterion (Theorem 8.13, Robert

(2003)).

There are two main technical challenges which we develop novel tools to overcome: (1) the proof

requires characterizing the limit points of the solutions to the linear optimization sub-routine in

Eq. (24) under fluid scaling, which is difficult because the parameters in the objective function,
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{Wk(·)}k∈K, are themselves stochastic variables. We will employ a careful analysis of the (semi-

)continuity properties of the optimization problem to study these limit points; (2) the jobs’ transi-

tions from the Preparation stage to the Adaptive stage are complex because a job can depart from

the Preparation stage only after all of its inspection have completed (for otherwise the inspection

outcomes would not have been available). This in turn causes the order of departures from a stage

to deviate from that of the arrivals, making standard techniques ineffective in showing the conver-

gence of the system’s stochastic trajectory to a fluid limit. We will prove convergence by developing

explicit bounds on the degree of “shuffling”, which allows us to conclude that the deviation is not

too substantial to invalidate convergence.

8.0.4. Additional Notation For a vector x= (x1, . . . , xn), we will denote by ‖x‖2 the l2 norm

of x: ‖x‖2 =
√∑n

i=1 x
2
i . We will denote by ‖·‖T the maximal norm of a function over the interval

[0, T ]: ‖f(t)‖T = supt∈[0,T ] |f(t)|. For x, y ∈R, we will use x∨ y and x∧ y to denote min{x, y} and

max{x, y}, respectively. For two vectors of the same dimension, x and y, we write x ≤ y if all

coordinates of x are dominated by those of y. Similarly, for a set of vectors, Y, we write x≤Y if x≤ y

for all y ∈Y. The addition of two sets X +Y is defined to be the set {z : z = x+ y, x∈X , y ∈Y}.

8.1. Classification Accuracy of Preparation Stage

We begin in this subsection with a result that bounds the classification error of the coarse label

estimate from the Preparation stage. Denote by ĤP
i the maximum likelihood estimator, Ĥi,t, when

job i exits the Preparation stage. Recall from the construction of our policy that each job will be

inspected for the same, deterministic number of times in the Preparation stage, and it is not difficult

to verify that {ĤP
i }i∈N are i.i.d. We will denote by πP the distribution of the estimator ĤP

1 ,

πPh
4
= P

(
ĤP

1 = h
)
, h∈H. (41)

and by εP as the error probability εP
4
= maxh∈H P(ĤP

1 6= h
∣∣H1 = h). The following proposition

provides an upper bound on εP , which in turn upper-bounds the distance from πP to the original

prior distribution, π. The proof is given in Appendix A.5, which relies on a generalization of Lemma

5.1 in combination with fact that Si,t(h, l) can be viewed as a martingale under proper conditioning.

Proposition 8.2 We have that εP ≤ 2cH ln−1(1/δ), and

πPh ≤ πh + εP
∑
h′ 6=h

πh′ ≤ πh + 2cH ln−1(1/δ), ∀h∈H. (42)
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8.2. State Representation and Fluid Solutions

We describe in this subsection a Markovian representation of the Preparation and Adaptive stages

as well as the notion of fluid solutions. We will index jobs in the two stages according to the order

in which they arrive. Denote by I(t) the total number of jobs in the system at time t, and let

I(t) = {1,2, . . . , I(t)}. For instance, job 1 corresponds to the oldest job in system at time t, and

job I(t) corresponds to the youngest. The indices will be updated accordingly in the event of the

departure of job i, where all jobs with an index greater than i will have their index reduced by 1.

For each i∈ I(t), we define a job state, Yi(t), which consists of the following variables:

1. Y S
i (t)∈ {1,2} represents the stage the job is currently, with 1 and 2 corresponds to job i being

in the Adaptive and Preparation stage, respectively.

2. {(Xi,s,Ei,s)}
Ni,t
s=1 contains all the past inspection responses of job i, along with the corresponding

expert types, where Ni,t the number of inspections received by job i by time t.

3. Y E
i (t)⊂E is the set of experts who are in the process of inspecting job i at time t.

4. NP
i (t) is the number of remaining inspections that job i has left in the Preparation stage.

5. Λi,k(t) is job i’s remaining number of inspections to be completed by experts of type k in the

Adaptive stage.

The above variables completely specify the state of the Preparation and Adaptive stages at time

t, and it is not difficult to verify that {I(t),{Yi(t)}i∈I(t)}t∈R+
is a countable-state Markov process.

We now formally define the workload process using the above state representation. Denote by W0(t)

the total number of remaining uninitiated inspections in the Preparation stage

W0(t) =
∑

i∈I(t),Y Si (t)=1

NP
i (t). (43)

Similarly, the workload in the kth expert pool in the Adaptive stage, is defined by:

Wk(t) =
∑

i∈I(t),Y Si (t)=2

Λi,k(t). (44)

The following notion of fluid solutions will serve as an approximation to the workload process.

Definition 8.3 (Fluid Solutions) The functions wk : R+ → R+, k ∈ {0} ∪ K are called a fluid

solution if there exist Lipschitz-continuous functions ak,dk : R+→ R+, k ∈ {0} ∪ K, with ak(0) =

dk(0) = 0 with Lipschitz constant cL > 0 such that

wk(t) = wk(0) + ak(t)−dk(t), (45)
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where, for almost all t∈R+,

ȧ0(t) = np, ḋ0(t) =

{
mqP , if w0(t)> 0,
nP , if w0(t) = 0,

{ȧk(t)}k∈K ≤ (1 + ln−1(1/δ))
∑
h∈H

πPhN ∗h (w(t)),

ḋk(t) =

{
rkmq

A, if wk(t)> 0,
ȧk(t), if wk(t) = 0,

∀k ∈ 1, . . . , cK, (46)

where qP , qA and nP were defined in Section 6, and πPh in Eq. (41). N ∗h (w(t)) is the set of optimal

solutions for the optimization problem

min
{nk}∈Nh

∑
k∈K

nkwk(t), (47)

and the set Nh was defined in Eqs. (25) through (27). Fix w0 ∈RcK+1
+ . We denote by W(w0) the set

of all fluid solutions with the initial condition w(0) = w0.

8.3. Convergence of Stochastic Sample Paths to the Fluid Solutions

We show in this section that the workload process converges to a fluid solution under proper scaling.

We will consider a sequence of systems, indexed by s∈N, which have different initial conditions for

the workload process at t= 0 but are otherwise identical. We will denote by Ws(·) the workload

process W(·) in the sth system. For n∈N, and a process {X(t)}t∈R+
, we will use {X(n, t)}t∈R+

to

denote the normalized process:

X(n, t) =
1

n
X(nt), t∈R+. (48)

The following proposition is the main result of this subsection.

Proposition 8.4 Fix w0 ∈ RcK+1
+ . Consider a sequence of initial conditions {w(s)}s∈N, such that

for a sequence of positive numbers {zs}s∈N with lims→∞ zs =∞, we have that lims→∞ z
−1
s w(s) = w0.

Suppose Ws(0) = w(s), for all s∈N. Then, for all T > 0, the following convergence takes place:

lim
s→∞

inf
w∈W(w0)

‖Ws(zs, t)−w(t)‖T = 0, almost surely. (49)

The remainder of this sub-section is devoted to the proof Proposition 8.4. Because the system

dynamics is quite complex, we will prove convergence using a sample-path-based approach that

helps us isolate the probabilistic aspect of the dynamics from its deterministic counterpart (Similar

sample-path-based approaches have also been used in Bramson (1998), Tsitsiklis and Xu (2012)). In

particular, we first identify a large subset of the sample space, called the regular set, which contains

the sample paths that exhibit certain typical behaviors. We then show that convergence to the fluid

solutions occurs over every sample path in the regular set.
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8.3.1. Regular Set We now construct the regular set. We will define all random quantities of

the system on the same probability space, (Ω,F ,P).

Definition 8.5 Fix T > 0. We define the following elements of F .

1. C0: Denote by Ξ0(t) the number of jobs that have arrived to the Preparation stage in the interval

[0, t]. Define C0 as the event where

lim
z→∞
‖Ξ0(z, t)− t‖T = 0, (50)

2. CE : Denote by Re,P (t) and Re,A(t) the total number of times an expert e ∈ E visits the Prepa-

ration and Adaptive stage, respectively, during the interval [0, t]. Let ke be the type of expert e.

Define CE as the event where

lim
z→∞

max
e∈E

∥∥Re,P (z, t)− qPµket
∥∥
T

= 0, and lim
z→∞

max
e∈E

∥∥Re,A(z, t)− qAµket
∥∥
T

=0. (51)

3. CH : Denote by ĤP
i the ML estimator of the type of the ith job upon leaving the Preparation

stage. Let gh(t) =
∑btc

i=1 I(ĤP
i = h). Define CH as the event where

lim
z→∞

max
h∈H

∥∥gh(z, t)−πPh t
∥∥
T

= 0. (52)

Define the regular set, C, as the intersection of all three events in Definition 8.5: C = C0∩CE ∩CH .

We have the following useful lemma. The proof is a direct consequence of the (functional) law of

large numbers applied to each of the three events, and is omitted.

Lemma 8.6 Fix T > 0. We have that P(C0) = P(CE) = P(CH) = 1, and, consequently, P(C) = 1.

8.3.2. Proof of Proposition 8.4 We return to the proof Proposition 8.4, which will be com-

pleted in two parts. Fix any sample path ω ∈ C. In the first part, we will show that over any finite

interval, any sub-sequence of {Wzs(·)}s∈N admits a further converging sub-sequence that converges

coordinate-wise to a Lipschitz-continuous function. We will then show, in the second part, that

all such limiting functions are in fact fluid solutions, i.e., for almost all t, their derivatives satisfy

the conditions given in Definition 8.3. The next result summarizes the first part of the proof. Fix

k ∈ {0,1, . . . , cK}. We will write

Ws
k(t) = Ws

k(0) + As
k(t)−∆s

k(t), t > 0, (53)

where As
k(t) and ∆s

k(t) denote the total number of inspections associated with the arrivals, and the

number of inspections that have been initiated, during [0, t], respectively, for jobs associated with

the workload Ws
k(·). The proof of the following proposition is given in Appendix A.6.
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Proposition 8.7 Fix T > 0. Denote by Lc the set of coordinate-wise c-Lipschitz functions from

[0, T ] to R3(cK+1)
+ . Fix the sample, ω ∈ C, and an increasing sequence, {si}i∈N, and let c= [qA+(vδ +

1)qP ]m+nP , where vδ was defined in Eq. (29). Then, there exists (w,a,d)∈Lc, and an increasing

sequence, {ij}j∈N ⊂N, such that

lim
j→∞

∥∥∥(W,A,∆)
sij (zsij , t)− (w,a,d)(t)

∥∥∥
T

= 0. (54)

We will refer to these w(·)’s as limit points of {Ws(zsi , ·)}i∈N.

The next result states that all of the limit points in Proposition 8.7 are in fact fluid solutions.

Proposition 8.8 Let w(·) be a limit point as defined in Proposition 8.7. Then w(·) is also a fluid

solution, as defined by Definition 8.3.

Proof. Fix ω ∈ C, and a limit point, (w,a,d), with the corresponding sequence {ij}j∈N, as defined
in Proposition 8.7. To avoid excessive use of subscripts, we will use s̄j and z̄j in place of sij and zsij ,

respectively. Fix t ∈ (0, T ) to be a time where all coordinates of the limit point are differentiable.

We begin with the Preparation stage, with k= 0. As was mentioned in the proof of Proposition 8.7,

each new job that arrives to the Preparation stage creates nP inspections. We have that

lim
z→∞

∥∥A0(z, t)−nP t
∥∥
T

= lim
z→∞

nP ‖Ξ0(z, t)− t‖T = 0, (55)

where the second equality follows from Eq. (50). This shows that ȧ0(t) = nP .

For d0(t), we consider two cases depending on the value of w0(t). First, suppose that w0(t)> 0.

Then there exists ε > 0, such that for all ε∈ (0, ε), there exists Nε > 0 such that, for all j ≥Nε,

Ws̄j (t′z̄j)> 0, ∀t′ ∈ [t, t+ ε]. (56)

Fix j and t′ so that Eq. (56) is true. Because the workload is non-zero, any expert who visits the

Preparation stage at time t′z̄j will necessarily lead to a unit increment in the process ∆
s̄j
0 (·). We

thus have that, for all j ≥Nε,

∆
s̄j
0 ((t+ ε)z̄j)−∆

s̄j
0 (tz̄j) =

∑
e∈E

Re,P ((t+ ε)z̄j)−Re,P (tz̄j), (57)

which, with scaling, implies that

lim
j→∞

(∆
s̄j
0 (z̄j, t+ ε)−∆

s̄j
0 (z̄j, t)) = lim

j→∞

(∑
e∈E

Re,P (z̄j, t+ ε)−Re,P (z̄j, t)

)
= qPmε, (58)

where the last step follows from Eq. (51), and the fact that
∑

k ρkµk = µ= 1 (Eq. (2)). Taking the

limit as ε→ 0, we obtain

ḋ0(t) = lim
ε→0

ε−1

[
lim
j→∞

(∆
s̄j
0 (z̄j, t+ ε)−∆

s̄j
0 (z̄j, t))

]
= lim

ε→0
ε−1(qPmε) = qPm, if w0(t)> 0. (59)
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Now suppose that w0(t) = 0. In this case, we will exploit the properties that w0(·) is differentiable

at t, and is non-negative over [0, T ]. Since w0(t) = 0, the two properties together imply ẇ0(t) must

be zero. We have that ḋ0(t) =−(ẇ0(t)− ȧ0(t)) = nP , if w0(t) = 0. This proves the case for k= 0.

We next consider the case of k= 1, . . . , cK. For ḋk(t), the analysis is identical to the case of k= 0,

which we shall omit. We now turn to the analysis for ȧk(·). In particular, we will show that

{ȧk(t)}k∈K ≤ (1 + ln−1(1/δ))
∑
h∈H

πPhN ∗h (w(t)), (60)

where N ∗h (w(t)) was defined in Eq. (47). The proof of Eq. (60) is more involved than for the other

coordinates of the fluid solution, because our inspection policy determines the workload vector of

a job entering the Adaptive stage using two sources of information: (1) the coarse estimate of the

job’s label from the Preparation stage, and (2) the existing workload in the Adaptive stage. Our

proof will also proceed in two steps:

(a) We first show that the arrival process of jobs with the same coarse label estimate converges

locally to its “mean value” under fluid scaling.

(b) We then show that the average workload vector among jobs with the same coarse estimator

converges locally to a point that is dominated by the set (1 + ln−1(1/δ))N ∗h (w(t)).

These two steps together then yield Eq. (60).

For t ∈ (0, T ), denote by Bs(t) the set of all jobs that arrived to the Adaptive stage during the

interval [0, t] in the s-th system, and by Bsh(t) the subset of jobs in Bs(t) whose ML estimators

upon exiting the Preparation stage, ĤP
i , are equal to h. Let Bs

h(t) be the size of the set Bsh(t). The

following lemma formalizes step (a) above, whose proof is given in Appendix A.7. As was mentioned

in the beginning of Section 8, the proof of this lemma involves a careful analysis of the potential

shuffling in the order in which jobs depart from the Preparation stage.

Lemma 8.9 Fix h∈H. For almost all t∈ (0, T ), we have that

ḃh(t)
4
= lim

ε→0
lim
j→∞

B
s̄j
h (z̄j, t+ ε)−Bs̄j

h (z̄j, t)

ε
=


mqP

nP
πPh , if w0(t)> 0,

πPh , if w0(t) = 0,

(61)

where πPh
4
= P

(
ĤP

1 = h
)
, as was defined in Eq. (41).

Step (b) is summarized in the following lemma. It states that, over a small time interval around

t, the average workload among the jobs in Bs̄jh (·) stays close to a point that is dominated by the set

N ∗h (w(t)). The proof, which utilizes a semi-continuity property of the solution set of the workload-

generating optimization problem (Eq. (24)), is given in Appendix A.8.



Massoulie and Xu: On the Capacity of Information Processing Systems 27

Lemma 8.10 Fix t ∈ (0, T ), and h ∈ H. Let Λh(t, ε, j) be the average workload across all jobs

arriving to the Adaptive stage during [z̄jt, z̄j(t+ ε)) whose ML estimator is h, i.e.,

Λh(t, ε, j) =
1

B
s̄j
h (z̄j(t+ ε))−Bs̄j

h (z̄jt)

∑
i∈B

s̄j
h

(z̄j(t+ε))\B
s̄j
h

(z̄jt)

Λi. (62)

We have that

limsup
ε↓0

limsup
j→∞

inf
y≤N∗

h
(w(t))

‖Λh(t, ε, j)− y‖2 = 0. (63)

We are now ready to complete the proof of Proposition 8.8. Let t ∈ (0, T ) be a point where all

coordinates of a(·) are differentiable. We have that

(ȧk(t))k=1,...,cK =lim
ε↓0

lim
j→∞

As̄j (z̄j, t+ ε)−As̄j (z̄j, t)

ε

(a)
= lim

ε↓0
lim
j→∞

1

εz̄j

∑
h∈H

∑
i∈B

s̄j
h

(z̄j(t+ε))\B
s̄j
h

(z̄jt)

Λi

=lim
ε↓0

lim
j→∞

∑
h∈H

B
s̄j
h (z̄j(t+ ε))−Bs̄j

h (z̄jt)

εz̄j
·

∑
i∈B

s̄j
h

(z̄j(t+ε))\B
s̄j
h

(z̄jt)
Λi

B
s̄j
h (z̄j(t+ ε))−Bs̄j

h (z̄jt)

= lim
ε↓0

lim
j→∞

∑
h∈H

B
s̄j
h (z̄j, t+ ε)−Bs̄j

h (z̄j, t)

ε
Λh(t, ε, j)

(b)
= lim

ε↓0
lim
j→∞

∑
h∈H

ḃh(t)Λh(t, ε, j), (64)

where step (a) follows from the definition of the policy in Eq. (30): As
k(t) =

∑
h∈H

∑
i∈Bs

h
(t) Λi,k, and

step (b) from Lemma 8.9. Applying Lemma 8.10 for every h∈H, we have that

limsup
ε↓0

limsup
j→∞

inf
y≤

∑
h∈H ḃh(t)N∗

h
(w(t))

∥∥∥∥∥y−∑
h∈H

ḃh(t)Λh(t, ε, j)

∥∥∥∥∥
2

= 0. (65)

Since Nh, the feasible solutions of the linear program in Eq. (24), is a compact set, the set of optimal

solutions, N ∗h (w(t)), is also compact. The compactness of N ∗h (w(t)) combined with Eq. (65) implies

lim
ε↓0

lim
j→∞

∑
h∈H

ḃh(t)Λh(t, ε, j)≤
∑
h∈H

ḃh(t)N ∗h (w(t))≤ (1 + ln−1(1/δ))
∑
h∈H

πPhN ∗h (w(t)), (66)

where the last inequality follows from the fact that ḃh(t)≤ πPh mqP

nP
≤ πPh (1 + ln−1(1/δ)) (Eq. (20)).

Eqs. (64) and (66) together imply that

(ȧk(t))k=1,...,cK ≤ (1 + ln−1(1/δ))
∑
h∈H

πPhN ∗h (w(t)). (67)

We have verified that the all conditions in Definition 8.3 are met, and w(·) is a fluid solution. This

completes the proof of Proposition 8.8. Q.E.D.
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8.4. Drift Properties of Fluid Solutions

We show in this subsection that the fluid solutions exhibit a certain contraction property with

respect to the Lyapunov function, L :RcK+1
+ →R+, defined as:

L(w) = ‖w‖2 =

√√√√ cK∑
k=0

w2
k, w ∈RcK+1

+ . (68)

The following proposition is the main result of this subsection, which shows that when m is suffi-

ciently large, the value of the Lyapunov function always decreases by a constant amount starting

from any initial condition with unit value.

Proposition 8.11 Let m∗F be the optimal value of FLP. Suppose that mqP >nP , and

mqA >

(
1 +

ln(2cH) + gδ
ln(1/δ)

)(
1 +

2c2
Hd

dr ln(1/δ)

)
(1 + ln−1(1/δ))m∗F . (69)

Then, there exist τ, ε′ > 0, such that, for any w0 ∈RcK+1
+ with L(w0) = 1,

L(w(τ))≤ 1− ε′, ∀w ∈W(w0). (70)

The proof of the proposition is given in Appendix A.9. A main step of the proof is to couple the

drift properties of the fluid solutions, a result of the workload creation in the Adaptive stage, to the

structure of the Fundamental Linear Program (FLP) in Definition 7.1, and show that the contraction

property holds as long as the system size is approximately greater than the optimal solution of

FLP. To this end, we leverage an upper bound on the error of the coarse label estimate produced

by the Preparation stage, and show that its accuracy is sufficiently high so that the appropriation

of resouces in the Adaptive stage resembles an optimal solution to FLP.

8.5. Proof of Stability of Preparation and Adaptive Stages

We now complete the proof of Theorem 8.1 by establishing the joint stability of the Preparation

and Adaptive stages. We will use the following version of the Foster-Lyapunov criterion. The main

steps in this subsection are similar to those used in Massoulié (2007).

Proposition 8.12 (Theorem 8.13, Robert (2003)) Let {X(t)}t∈R+
be a Markov jump process

on a countable state space, X . Suppose that there exists a function L :X →R+, constants C, ε > 0,

and an integrable stopping time τ̂ > 0, such that for all x∈X such that L(x)>C, we have that

E
(
L(X(τ̂))

∣∣X(0) = x
)
≤L(x)− εE

(
τ̂
∣∣X(0) = x

)
. (71)

Suppose, in addition, that the set {x :L(x)≤C} is finite, and that E
(
L(X(τ̂))

∣∣X(0) = x
)
<∞ for

all x∈X . Then, {X(t)}t∈R+
is positive recurrent.
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Denote by {U(t)}t∈R+
the Markov process that describes the system dynamics in the Preparation

and Adaptive stages, where the states are defined in Section 8.2, and by U the state space. We will

denote by Pu(·) the probability distribution associated with the process U(·) with initial condition

u ∈ U . Define the function L̂ : U → R+ as the extension of L(·) on U , i.e., L̂(U(t)) = L(W(t)) =

‖W(t)‖2. Let τ and ε′ be defined as in Proposition 8.11. For every ũ∈ U , let

τ̂ = L̂(ũ)τ =L(w̃)τ. (72)

Consider the family of probability measures{
Pũ

(
Wk(τ̂)/L̂(ũ)∈ ·

)}
k=0,...,cK,ũ∈U,w̃ 6=0

. (73)

We first show that the above family is uniformly integrable. We have the dominance relation:

Wk(t)≤Wk(0) + max{vδ, nP}Ξ0(t), t∈R+, k= 0, . . . , cK. (74)

To see why this is true, recall that a job creates nP inspections in the Preparation stage (k= 0) and

at most vδ total inspections in the Adaptive stage (k = 1, . . . , cK). Hence, the second term on the

right-hand side of Eq. (74) dominates the total number of inspections that could have been added

to Wk(·) by time t. Scaling both sides of Eq. (74) by L̂(ũ) and setting t= τ̂ , we have that, when

U(0) = ũ,

Wk(τ̂)/L̂(ũ)≤w̃k/L̂(ũ) + max{vδ, nP}Ξ0(τ̂)/L̂(ũ)

=w̃k/L(w̃) + max{vδ, nP}Ξ0(L̂(ũ)τ)/L̂(ũ)
(a)

≤1/α1 + max{vδ, nP}Ξ0(L̂(ũ)τ)/L̂(ũ), (75)

for some constant α1 > 0, where step (a) follows from the first inequality in Eq. (239) of Lemma

B.1 in Appendix B. Since Ξ0(·) is a unit-rate Poisson process, we have E
(

Ξ0(L̂(ũ)τ)/L̂(ũ)
)

=

Var
(

Ξ0(L̂(ũ)τ)/L̂(ũ)
)

= τ. The above arguments show that the first and second moments of

Wk(τ̂)/L̂(ũ) are both bounded from above uniformly over all ũ∈ U , so long as w̃ 6= 0. This implies

the uniform integrability of the family of distributions in Eq. (73). Using again Eq. (239) of Lemma

B.1, we have that

L̂(U(τ̂))/L̂(ũ) =L(W(τ̂))/L̂(ũ)≤ α2‖W(τ̂)‖∞/L̂(ũ)≤ α2

α1

+ max{vδ, nP}Ξ0(L̂(ũ)τ)/L̂(ũ). (76)

Using the same arguments as those following Eq. (75), we have that the set of probability measures{
Pũ

(
L̂(U(τ̂))/L̂(ũ)∈ ·

)}
ũ∈U,w̃ 6=0

(77)

is also uniformly integrable.
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We now prove the validity of Eq. (71) in our context. In particular, we will show that there exist

A, ε > 0, such that for all ũ∈ U , if L̂(ũ)≥A, then we have that

Eũ

(
L̂(U(L̂(ũ)τ))

)
≤ L̂(ũ)(1− ετ), (78)

where we have used the substitution τ̂ = L̂(ũ)τ . By the definitions of L̂ and τ̂ , we have that

Eũ

(
L̂(U(L̂(ũ)τ))/L̂(u)

)
=Eũ

(
L(W(L(w̃)τ))/L(w̃)

) (a)
= Eũ

(
L(L(w̃)−1W(L(w̃)τ))

)
=Eũ

(
L(W(L(w̃), τ))

)
, (79)

where step (a) is based on the second property in Lemma B.1 (one-homogeneity of L(·)). In light

of Eq. (79), the condition in Eq. (78) is equivalent to

Eũ (L(W(L(w̃), τ)))≤ 1− ετ. (80)

We will now prove Eq. (80) by contradiction. For the sake of contradiction, suppose that there exists

a sequence of initial conditions, {ũs}s∈N, where L̂(ũs)→∞ as s→∞, such that

limsup
s→∞

Eũs (L(Ws(L(w̃s), τ)))≥ 1, (81)

where we have re-introduced the superscript s in W to signify the initial condition Ws(0) = w̃s. In

particular, after scaling, we can define the quantity ws:

ws 4= Ws(L(w̃s),0) = Ws(0)/L(w̃s) = w̃s/L(w̃s). (82)

Since L(w) = ‖w‖2, we have that ‖ws‖2 = L(ws/L(w̃s)) = 1, i.e., ws belongs to the compact set

{w ∈ RcK+1
+ : ‖w‖2 = 1}. The compactness implies that there exists w0 ∈ RcK+1

+ , with L(w0) =

‖w0‖2 = 1, and a sub-sequence of {ws}, {wsi}i∈N, such that

lim
i→∞

wsi = w0. (83)

Since L(w̃s) = L̂(w̃s)→∞ as s→∞ by our assumption, by Proposition 8.4 and Eq. (83), we have

lim
i→∞

inf
y∈V(w0,τ)

‖y−Wsi(L(w̃si), τ)‖2 = 0, a.s., (84)

where V(w0, t) is defined to be the set of all states of the fluid solution at time t ∈ R+, starting

with an initial condition w0: V(w0, t) =
⋃

w(·)∈W(w0) w(t). It can be verified from the definition of

the fluid solutions that the set V(w0, t) is compact for all t and w0. The compactness of V(w0, τ)

along with Eq. (84) implies that there exist y ∈ V(w0, τ) and a sub-sequence of {w̃si}, {w̃sij }j∈N,

such that

lim
j→∞

W
sij (L(w̃

sij ), τ) = y, a.s. (85)
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Since L(·) is a continuous function, the above equation further implies that

lim
j→∞

L(W
sij (L(w̃

sij ), τ)) =L(y)≤ 1− ε′, a.s., (86)

where the last inequality follows from the fact that L(w0) = 1, y ∈ V(w0, τ), and Proposition 8.11.

As was shown earlier, the family of distributions,
{
Pũ

(
L̂(U(τ̂))/L̂(ũ)∈ ·

)}
ũ∈U,w̃ 6=0

, is uniformly

integrable (Eq. (77)), and hence one of its subsets

{
P

ũ
sij (L(W

sij (L(w̃
sij ), τ)∈ ·)

}
i∈N

(87)

is also uniformly integrable. Combining Eq. (86) with the above uniform integrability implies that

lim
j→∞

E
ũ
sij (L(W

sij (L(w̃
sij ), τ))) =L(y)≤ 1− ε′ < 1, (88)

which contradicts with Eq. (81). This completes the proof of Eq. (78).

The fact that Eũ(L̃(U(τ̂))<∞ for all ũ is readily verifiable from Eq. (76). Finally, for any finite

C, the set {u∈ U :L(u)<C} contains states where the total number of jobs currently in system is

bounded. Since each job can receive at most nP + vδ inspections, and the result of each inspection

belongs to a finite set, it follows (Section 8.2) that the set {u∈ U :L(u)<C} is finite. We have thus

verified all the conditions in Proposition 8.12, and established the positive recurrence of U(·). This

completes the proof of Theorem 8.1. Q.E.D.

9. Stability of Residual Stage

The following result gives a sufficient condition on the stability of the Residual stage; the proof is

given in Appendix A.10.

Proposition 9.1 Suppose that the Preparation and Adaptive stages are stable. Then, the Residual

stage is stable whenever

mqR > 3cHζ0(1 + ln(4cH) ln−1(1/δ)). (89)

10. Proof of Theorem 4.1

We now complete the proof of our main result, Theorem 4.1. We begin by showing that the policy

proposed in Section 6 is δ-accurate: for every job i that departs from the system, the probability of

it being misclassified is at most δ. The proof is given in Appendix A.11.

Proposition 10.1 Fix δ ∈ (0,1). Under the inspection policy described in Section 6,

P
(
Ĥi 6=Hi

∣∣Hi = h
)
≤ δ, ∀h∈H, i∈N. (90)
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Completing the Proof of Theorem 4.1. We now show that the minimum value of m required

to stabilize the system under the proposed inspection policy satisfies the inequality in Eq. (10).

Combining Theorem 8.1 and Proposition 9.1, we have that the system is stable as long as all of the

following hold:

mqA >

(
1 +

ln(2cH) + gδ
ln(1/δ)

)(
1 +

2c2
Hd

dr ln(1/δ)

)
m∗F , (91)

mqP >ζ0 ln ln(1/δ), mqR > 3cHζ0(1 + ln(4cH) ln−1(1/δ)), (92)

where m∗F is the optimal value of FLP (Definition 7.1). Recall from the definition

of our policy in Eqs. (20) and (21) that qP =
(
ζ0 ln ln(1/δ) + ln−1(1/δ))

)
/m, qR =[

3cHζ0(1 + ln(4cH) ln−1(1/δ)) + 1
]
/m, and qA = 1−qP −qR. We have that Eq. (92) is automatically

satisfied by construction, whenever qP , qR ∈ (0,1). Therefore, the system is stable if Eq. (91) is true,

which, by inserting the expressions for qP and qR, requires that

m>

(
1 +

ln(2cH) + gδ
ln(1/δ)

)(
1 +

2c2
Hd

dr ln(1/δ)

)
(1 + ln−1(1/δ))m∗F + ιδ, (93)

where ιδ
4
= ζ0 ln ln(1/δ) + 3cHζ0(1 + ln(4cH) ln−1(1/δ)) + 1 + ln−1(1/δ). By dividing both sides of

Eq. (93) by m∗F , the condition becomes

m

m∗F
>

(
1 +

ln(2cH) + gδ
ln(1/δ)

)(
1 +

2c2
Hd

dr ln(1/δ)

)
(1 + ln−1(1/δ)) +

ιδ
m∗F

. (94)

The two terms on the right-hand side of the above equation can be bounded as follows. For the first

term, recall from the definition in Eq. (28) that gδ = 3zd−1/2
√

ln(1/δ) ln ln(1/δ). It is not difficult

to see that there exist constants c̄1 and δ̄1 > 0, independent of π, such that for all δ < δ̄1(
1 +

ln(2cH) + gδ
ln(1/δ)

)(
1 +

2c2
Hd

dr ln(1/δ)

)
(1 + ln−1(1/δ))<1 +

c̄1

√
ln(1/δ) ln ln(1/δ)

ln(1/δ)
= 1 + c̄1

√
ln ln(1/δ)

ln(1/δ)
.

(95)

For the second term in Eq. (94), ιδ/m∗F , note that the dominating term in ιδ is of order ln ln(1/δ).

Recall from Lemma 7.3 that m∗F ≥ d
−1

ln(1/δ), and hence there exist constants c̄2 and δ̄2 > 0,

independent of π, such that for all δ < δ̄2, we have that ιδ
m∗
F
≤ ιδ

d
−1

ln(1/δ)
≤ c̄2

ln ln(1/δ)

ln(1/δ)
. This, along

with Eqs. (94) and (95), implies that, for all δ <min{δ̄1, δ̄2}, it suffices to have

m

m∗F
> 1 + c̄1

√
ln ln(1/δ)

ln(1/δ)
+ c̄2

ln ln(1/δ)

ln(1/δ)
. (96)

Finally, the lower bound in Proposition 7.2 shows that the optimal system size, m∗(δ,π), satisfies

m∗(δ,π)≥ (1− δ)
[
1−

(
ln

1

1− δ
+ e−1

)
ln−1(1/δ)

]
m∗F . (97)
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In particular, there exist constants c̄3 and δ̄3 > 0, independent of π, such that for all δ < δ̄3

m∗F ≤
(

1 +
c̄3

ln(1/δ)

)
m∗(δ,π). (98)

Substituting Eq. (98) into Eq. (96), and noticing that the leading term in
(

m
m∗(δ,π)

− 1
)
is of order√

ln ln(1/δ)

ln(1/δ)
, we conclude that there exist c0, δ0 > 0, independent of π, such that, for all δ ∈ (0, δ0), the

system is stable under the proposed policy whenever

m

m∗(δ,π)
> 1 + c0

√
ln ln(1/δ)

ln(1/δ)
. (99)

Together with Proposition 10.1, this completes the proof of Theorem 4.1. Q.E.D.

11. Concluding Remarks

The main objective of this paper is to understand the design principles and fundamental limitations

involved as one aims to efficiently classify a large set of items using a finite amount of processing

resources. The main result demonstrates a prior-oblivious inspection architecture that asymptot-

ically uses the minimum number of experts, in the regime where the required classification error

tends to zero. More broadly speaking, our result could be viewed as an attempt towards understand-

ing how to build effective processing architectures and algorithms for large-scale statistical learning

or information extraction tasks, given limited resources or processing power. We believe that there

are many other problems in this domain, situated at the intersection between stochastic modeling

and statistics, that may be of interest for future research.

The present paper leaves open three main questions. First, we have thus far required the inspection

policies to be stable, while the more refined metric of delays experienced by the jobs has not been

investigated. Second, the resource efficiency property of the proposed policy applies only in the

regime where the allowable error is close to zero. If significantly greater errors can be tolerated,

however, it becomes less clear what inspection policy one should choose and whether a different

criterion of resource efficiency should be adopted. Finally, it would be interesting to identify, and

provide rigorous guarantees for, simpler heuristic policies, such as the one we propose in Appendix

D, which are more easily implementable in practical applications.
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Appendix A: Proofs

A.1. Proof of Lemma 5.2

Proof. Fix i ∈N. Denote by Ni the total number of inspections job i receives before departing

from the system. Let Yi,n be the inspection history of job i up till the nth inspection:

Yi,n = {(Ki,j,Xi,j)}j=1,...,n. (100)

We will use yn = {(kj, xj)}j=1,...,n to denote a specific realization of Yi,n. Define ph(yn) as the likeli-

hood associated with an inspection history, yn = {(kj, xj)}j=1,...,n under label h:

ph(yn) =
n∏
j=1

p(h,kj, xj). (101)

Define qh(yn) as the probability

qh(yn) =P(Ni = n,Yi,n = yn
∣∣Hi = h). (102)

We have that

qh(yn) =P(Ni = n,Yi,n = yn
∣∣Hi = h)

=P(Ni = n
∣∣Yi,n = yn)

n∏
j=1

p(h,kj, xj)P(Ki,j = kj,Ni ≥ j
∣∣Yi,j−1 = yj−1)

=
( n∏
j=1

p(h,kj, xj)
)(

P(Ni = n
∣∣Yi,n = yn)

n∏
j=1

P(Ki,j = kj,Ni ≥ j
∣∣Yi,j−1 = yj−1)

)
=ph(yn)v(yn) (103)

where yj, 1≤ j ≤ n, denotes the first j inspections in yn, with y0
4
= ∅, and v(yn)

4
= P(Ni = n

∣∣Yi,n =

yn)
∏n

j=1 P(Ki,j = kj,Ni ≥ j
∣∣Yi,j−1 = yj−1). Importantly, note that for a given policy, v(yn) only

depends on the realization of the history, and not on the choice of h.

We have that

E
(
pl(Yi,Ni)

ph(Yi,Ni)

∣∣∣ Ĥi = h,Hi = h

)
=E

(
pl(Yi,Ni)

ph(Yi,Ni)
I(Ĥi = h)

∣∣∣Hi = h

)
/P(Ĥi = h

∣∣Hi = h), (104)
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where

E
(
pl(Yi,Ni)

ph(Yi,Ni)
I(Ĥi = h)

∣∣Hi = h

)
(a)
=
∞∑
n=1

∑
yn

pl(yn)

ph(yn)
P(Ni = n,Yi,n = yn, Ĥi = h

∣∣Hi = h)

=
∞∑
n=1

∑
yn

pl(yn)

ph(yn)
qh(yn)P(Ĥi = h

∣∣Ni = n,Yi,n = yn,Hi = h)

(b)
=
∞∑
n=1

∑
yn

pl(yn)v(yn)P(Ĥi = h
∣∣Ni = n,Yi,n = yn,Hi = h)

(c)
=
∞∑
n=1

∑
yn

pl(yn)v(yn)P(Ĥi = h
∣∣Ni = n,Yi,n = yn,Hi = l)

(d)
=
∞∑
n=1

∑
yn

ql(yn)P(Ĥi = h
∣∣Ni = n,Yi,n = yn,Hi = l)

=
∞∑
n=1

∑
yn

P(Ni = n,Yi,n = yn, Ĥi = h
∣∣Hi = l)

=P(Ĥi = h
∣∣Hi = l). (105)

The second summation in step (a) is over all possible realizations of Yi,n for which ph(yn) is non-zero.

Steps (b) and (d) follow from Eq. (103). For step (c), we used the fact that conditioning on the event

{Ni = n,Yi,n = yn}, the event {Ĥi = h} is independent from the true label of job i. Eqs. (104) and

(105) combined yield that

E
(
pl(Yi,Ni)

ph(Yi,Ni)

∣∣∣ Ĥi = h,Hi = h

)
=

P(Ĥi = h
∣∣Hi = l)

P(Ĥi = h
∣∣Hi = h)

≤ δ

1− δ
, (106)

where the last equality follows from the assumption of the policy being δ-accurate.

Define

δh = P(Ĥi 6= h
∣∣Hi = h). (107)

Using essentially the same steps of deduction as those leading to Eq. (106), we have that

E
(
pl(Yi,Ni)

ph(Yi,Ni)

∣∣∣ Ĥi 6= h,Hi = h

)
=

P(Ĥi 6= h
∣∣Hi = l)

P(Ĥi 6= h
∣∣Hi = h)

≤ 1

δh
(108)

We are now ready to prove the main claim of the lemma. We have that

E
(
Si(h, l)

∣∣Hi = h
)

=E

(
Ni∑
j=1

ln
p(h,Ki,j,Xi,j)

p(l,Ki,j,Xi,j)

∣∣∣Hi = h

)

=E
(
− ln

pl(Yi,Ni)

ph(Yi,Ni)

∣∣∣Hi = h

)
=−E

(
ln
pl(Yi,Ni)

ph(Yi,Ni)

∣∣∣ Ĥi = h,Hi = h

)
P(Ĥi = h

∣∣Hi = h)

−E
(

ln
pl(Yi,Ni)

ph(Yi,Ni)

∣∣∣ Ĥi 6= h,Hi = h

)
P(Ĥi 6= h

∣∣Hi = h)
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(a)

≥ − ln

(
E
(
pl(Yi,Ni)

ph(Yi,Ni)

∣∣∣ Ĥi = h,Hi = h

))
P(Ĥi = h

∣∣Hi = h)

− ln

(
E
(
pl(Yi,Ni)

ph(Yi,Ni)

∣∣∣ Ĥi 6= h,Hi = h

))
P(Ĥi 6= h

∣∣Hi = h)

(b)

≥(1− δ) ln
1− δ
δ

+ δh ln δh

(c)

≥(1− δ) ln
1− δ
δ
− e−1. (109)

Step (a) is based on the Jensen’s inequality, by noting that that − ln(·) is a convex function. Step

(b) follows from Eqs. (106) and (108), and the policy being δ-accurate. Step (c) is based on the

observation that (x lnx) is monotonically decreasing over x∈ (0, e−1) and monotonically increasing

over (e−1,1). This proves Lemma 5.2. Q.E.D.

A.2. Proof of Proposition 7.2

Proof. Fix a stable inspection policy, ψ. Denote by Ni the total number of inspections received

by job i before a classification is produced, and by Si(h, l) the sum of the log-likelihood ratios by

the time when job i departs from the system:

Si(h, l) =

Ni∑
j=1

Zi,j(h, l,Ki,j). (110)

Define:

1. Inh , the set of the first nπh jobs of true label h to depart from the system;

2. ijh, the index of the jth job of true label h to depart from the system;

3. T nh , the first time when nπh jobs of true label h have departed form the system;

4. Ni,k, the number of times that job i has been inspected by an expert of type k by the time of

its departure;

5. M t
k, the total number of inspections completed by the type-k experts by time t.

Fix h ∈H. Let T n be the time by which there has been at least πhn departures from every job

label:

T n = max
h∈H

T nh . (111)

We have that, for all k ∈K,

MTn

k ≥
∑
h∈H

∑
i∈In

h

Ni,k =
∑
h∈H

nπh∑
j=1

N
i
j
h
,k
, (112)

where the first inequality follows from the definition of M t
k and T n. Take expectations of both sides

of Eq. (112), and define the variables

υnh,k =
1

nπh

nπh∑
j=1

E
(
N
i
j
h
,k

)
. (113)
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We have that

E(MTn

k )≥
∑
h∈H

nπh∑
j=1

E
(
N
i
j
h
,k

)
= n

∑
h∈H

πhυ
n
h,k. (114)

Recall that jobs arrive to the system according to a unit rate Poisson process, and each job has

label h with probability πh. Since we have assumed that the inspection policy is stable, the time

when there are nπh jobs with label h that have departed from the system, T nh , cannot be much later

than when the (nπh)th job with label h arrived to the system, which, by the strong law of large

numbers applied to a Poisson process, is at most n+ o(n) almost surely, as n→∞. Formally, there

exists a function f :R+→R+, with limx→∞ x
−1f(x) = 0, such that, almost surely,

limsup
n→∞

[T nh − (n+ f(n))]≤ 0, ∀h∈H. (115)

We thus have that

limsup
n→∞

1

n
E(MTn

k )
(a)

≤ limsup
n→∞

1

n
E(M

n+f(n)
k )

(b)

≤ limsup
n→∞

mrk(1 + f(n)/n) =mrk, (116)

Step (a) follows from Eq. (115) and the definition of T n. Step (b) is based on the fact that the

total number of completed inspections by experts of type k during an interval [0, x] is stochastically

dominated by a Poisson random variable with mean mrkx, which corresponds to the case where all

experts of type k work without any idling during that interval. Define

nh,k = lim sup
n→∞

υnh,k. (117)

Combining Eqs. (114) and (116), we have that∑
h∈H

πhnh,k =
∑
h∈H

πh limsup
n→∞

υnh,k ≤ limsup
n→∞

1

n
E(MTn

k )≤mrk, ∀k ∈K. (118)

By Lemma 5.2, we have that, for any job i whose true label is h,

∑
k∈K

E(Ni,k)D(h, l, k)
(a)
= E

( Ni∑
j=1

Zi,j(h, l,Ki,j)
)

=E(Si(h, l))≥ (1− δ) ln
1− δ
δ
− e−1, (119)

where step (a) follows from Wald’s identity by noting that Ni,k is a stopping time with respect to

the sequence Zi,1(h, l,Ki,1),Zi,2(h, l,Ki,2), . . .. Summing both sides of Eq. (119) over the set Inh , we
have that, for all l 6= h,∑

k∈K

υnh,kD(h, l, k) =
∑
k∈K

( 1

nπh

nπh∑
j=1

E
(
N
i
j
h
,k

))
D(h, l, k)

=
1

nπh

nπh∑
j=1

(∑
k∈K

E
(
N
i
j
h
,k

)
D(h, l, k)

)
≥(1− δ) ln

1− δ
δ
− e−1. (120)
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Taking the limits as n→∞ on both sides of the above equation, we obtain that∑
k∈K

nh,kD(h, l, k)≥ (1− δ) ln
1− δ
δ
− e−1. (121)

Note that the υnh,k’s are non-negative by definition (Eq. 113) and hence nh,k ≥ 0 for all h and

k. From Eqs. (118) and (121), we conclude that the number of experts, m, under any δ-accurate

inspection policy must be no more than the optimal value of the following linear program:

minimize m (122)

s.t.
∑
k∈K

nh,kD(h, l, k)≥ (1− δ) ln
1− δ
δ
− e−1, ∀h, l ∈H, h 6= l, (123)∑

h∈H

nh,kπh ≤ rkm, ∀k ∈K, (124)

nh,k ≥ 0, ∀h∈H, k ∈K (125)

where Eqs. (118) and (121) correspond to the constraints in Eqs. (124) and (123), respectively. Note

that the above linear program differs from FLP (Definition 7.1) only through changing ln(1/δ) to

(1− δ) ln 1−δ
δ
− e−1 in Eq. (124). Hence, it is not difficult to verify that any value, m, associated

with a feasible solution of FLP must satisfy

m

m(δ,π)
≥

(1− δ) ln 1−δ
δ
− e−1

ln(1/δ)
= 1− δ−

(1− δ) ln 1
1−δ + e−1

ln(1/δ)
. (126)

The completes the proof of Proposition 7.2. Q.E.D.

A.3. Proof of Lemma 7.3

Proof. The first inequality in Eq. (38) in fact holds for any feasible solution of FLP, and it

follows directly from the constraints in Eq. (35) by noting that D(h, l, k) is always no greater than

d. To show the second inequality in Eq. (38), note that since D(h, l, k) is always no smaller than

d, if we were to have 1
ln(1/δ)

∑
k∈K n

∗
h,k > d−1, for some h ∈ H, then we would be able to decrease

one coordinate of {n∗h,k}k∈K without violating any constraint, and hence the second inequality in

Eq. (38) must hold for some optimal solution of FLP. Finally, to show Eq. (39), we sum both sides

of the the constraints in Eq. (34) over K, and obtain

m∗F =
∑
k∈K

rkm
∗
F

≥
∑
k∈K

∑
h∈H

n∗h,kπh

=
∑
h∈H

πh
∑
k∈K

n∗h,k

(a)

≥d−1
ln(1/δ)

∑
h∈H

πh

=d
−1

ln(1/δ), (127)
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where step (a) follows from the first inequality in Eq. (38), which we have just shown. This proves

Lemma 7.3. Q.E.D.

A.4. A Sufficient Condition for Accurate Classification

Fix i, n ∈ N, and denote by Yi,n = {(Xi,j,Ki,j)}j=1,...,n, the inspection history of job i up till

the nth inspection it receives, where the inspections are ranked according to their time of ini-

tiation. Let Si,[n](h, l) be the cumulative log-likelihood from the first n inspections: Si,[n](h, l) =∑n

j=1Zi,j(h, l,Ki,j), and similarly, let Ĥi,[n] be the ML estimator of Hi from the first n inspections.

Lemma A.1 Fix i ∈ N and x > 0. Let NF
i be the total number of inspections job i receives before

its departure from the system. Let N ∈N, N ≤NF
i , be a stopping time with respect to Yi,NFi . Denote

by Gx the event:

Gx = {∃l ∈H, s.t. Si,[N ](l, h
′)≥ x, ∀h′ ∈H, h′ 6= l}. (128)

We have that

P(Ĥi,[N ] 6= h , Gx
∣∣Hi = h)≤ cH exp(−x), ∀h∈H. (129)

Note that Lemma 5.1 follows from the above lemma by setting N =NF
i .

Proof. Fix i ∈ N. Let yn = {(xj, kj)}j=1,...,n be a particular realization of Yi,n. We will use the

notation of qh(yn), defined in Eq. (102) in Appendix A.1, with a slight modification of changing Ni

to N , i.e.,

qh(yn) =P(N = n,Yi,n = yn
∣∣Hi = h). (130)

Using a derivation that is identical to Eq. (103) in Appendix A.1, we have that

qh(yn) = v(yn)
n∏
j=1

p(h,kj, xj). (131)

where v(yn)
4
= P(N = n

∣∣Yi,n = yn)
∏n

j=1 P(Ki,j = kj,N ≥ j
∣∣Yi,j−1 = yj−1), and it does not depend

on h. We thus have that

qh(Yi,n)

ql(Yi,n)
=

∏n

j=1 p(h,Ki,j,Xi,j)∏n

j=1 p(l,Ki,j,Xi,j)
= exp(−Si,[n](l, h)). (132)

Fix h, l ∈H, h 6= l. Denote by Cln the event

Cln = {N = n , Ĥi,[n] = l}. (133)

In particular,

P(Ĥi,[N ] = l , Gx
∣∣Hi = h) =

∞∑
n=0

P(C l
n , Gx

∣∣Hi = h). (134)
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We now employ a change-of-measure argument. Denote by Yn the set of realizations, yn, for which

P(Cln, Yi,n = yn
∣∣Hi = h)> 0, and

Si,[n](l, h
′)≥ x, ∀h′ ∈H, h′ 6= l. (135)

We then obtain that

P(C l
n , Gx

∣∣Hi = h) =
∑
yn∈Yn

qh(yn)

=
∑
yn∈Yn

qh(yn)

ql(yn)
ql(yn)

(a)
=
∑
yn∈Yn

exp(−Si,[n](l, h))ql(yn)

(b)

≤ exp(−x)
∑
yn∈Yn

ql(yn)

=exp(−x)P(C l
n , Gx

∣∣Hi = l), (136)

where step (a) is based on Eq. (132), and step (b) from Eq. (135). Because Eq. (136) holds for any

l 6= h and n∈N, using a union bound, we have that

P(Ĥi 6= h , Gx
∣∣Hi = h) =

∑
l∈H,l 6=h

P(Ĥi = l , Gx
∣∣Hi = h)

(a)
=

∑
l∈H,l 6=h

(
∞∑
n=0

P(C l
n , Gx

∣∣Hi = h)

)
(b)

≤
∑

l∈H,l 6=h

exp(−x)

(
∞∑
n=0

P(C l
n , Gx

∣∣Hi = l)

)
=exp(−x)

∑
l∈H,l 6=h

P(Ĥi,[n] = l
∣∣Hi = l)

≤cH exp(−x), (137)

where step (a) follows from Eq. (134), and step (b) from Eq. (136). This proves our claim. Q.E.D.

A.5. Proof of Proposition 8.2

Proof. Fix h ∈ H and i ∈ N. Denote by SPi (h, l) the value of Si,t(h, l) at the time when job i

exits the Preparation stage. Define the event

B=
{
SPi (h, l)≥ ln ln(1/δ), ∀l ∈H\{h}

}
. (138)

The following lemma is the main technical result that we will use. Its proof makes use of the

Azuma-Hoeffding ineuqality by noting that Si,t(h, l) is a martingle under proper conditioning.
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Lemma A.2 Denote by B the complement of B. For all h∈H,

P
(
B
∣∣Hi = h

)
≤ cH ln−1(1/δ). (139)

Proof. We will index all inspections received by job i in the Preparation stage in an arbitrary

fashion, and denote by Kj the type of the expert who performed the jth inspection for job i, and

by Zj(·, ·,Kj) the corresponding log-likelihood ratio. Define

M l
n =

n∨nP∑
s=1

Zs(h, l,Ks)− d(h, l), n∈N, (140)

where

d(h, l) =
∑
k∈K

D(h, l, k)rk. (141)

Recall that the experts visit the three stages according to the randomized rule described in Sec-

tion 6.1, and hence the probability of the jth expert to inspect job i being type k is equal to

rk. Conditional on the true label of job i being h, we have that the Zs(h, l,Ks)’s are i.i.d., with

E(Z1(h, l,K1)|Hi = h) = d(h, l). It is hence not difficult to verify that {M l
n

∣∣Hi = h}n∈N is a martin-

gale. Recall that da
4
= minh,l∈H,h6=l d(h, l). We have that for any l ∈H\{h},

P(SPi (h, l))≤ ln ln(1/δ)
∣∣Hi = h) =P(SPi (h, l)−nPd(h, l)≤ ln ln(1/δ)−nPd(h, l)

∣∣Hi = h)

≤P(SPi (h, l)−nPd(h, l)≤ ln ln(1/δ)−nPda
∣∣Hi = h)

=P(SPi (h, l)−nPd(h, l)≤−(da− ln ln(1/δ)/nP )nP
∣∣Hi = h)

(a)

≤ exp

(
−(da− ln ln(1/δ)/nP )2(nP )2

8z2nP

)
≤ exp

(
−d

2anP − 2da ln ln(1/δ)

8z2

)
(b)
= exp(− ln ln(1/δ))

= ln−1(1/δ). (142)

Step (a) follows from the Azuma-Hoeffding’s Inequality (Lemma C.1 in Appendix C), and that

|M l
n−M l

n−1| ≤ 2z for all n∈N. Step (b) follows from the fact that

nP = ζ0 ln ln(1/δ) =
8z2 + 2da

d2a
ln ln(1/δ). (143)

Because Eq. (142) holds for all l, Lemma A.2 follows by applying a union bound over l ∈H. Q.E.D.

We now return to the proof of Proposition 8.2. Combining Lemmas 5.1 and A.2, we have that

P(ĤP
i 6= h

∣∣Hi = h)≤P(B
∣∣Hi = h) +P(ĤP

i 6= h , B
∣∣Hi = h)

(a)

≤cH ln−1(1/δ) +P(ĤP
i 6= h , B

∣∣Hi = h)
(b)

≤cH ln−1(1/δ) + cH exp(− ln ln(1/δ))

=2cH ln−1(1/δ), (144)
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where step (a) follows from Lemma A.2, and (b) from Lemma A.1 by setting x= ln ln(1/δ), N = nP ,

and noting that B ⊂Gx. Our claim that εP ≤ 2cH ln−1(1/δ) follows by noting that the above equation

holds for all h∈H. To show Eq. (42), note that, for all h∈H,

πPh ≤πh +
∑
h′ 6=h

πh′P(ĤP
1 = h

∣∣H1 = h′)

≤πh + εP
∑
h′ 6=h

πh′

≤πh + 2cH ln−1(1/δ). (145)

where the last inequality follows from the upper bound on εP , and that
∑

h′ 6=h πh′ ≤ 1. This completes

the proof of Proposition 8.2. Q.E.D.

A.6. Proof of Proposition 8.7

Proof. We start by looking at the workload process for the Preparation stage, Ws
0(t). For every

a, b > 0, with a> b, s∈N, and z > 0, applying the triangle inequality to Eq. (53), we have that

|Ws
0(z, a)−Ws

0(z, b)| ≤|As
0(z, a)−As

0(z, b)|+ |∆s
0(z, a)−∆s

0(z, b)|
(a)
=nP |Ξ0(z, a)−Ξ0(z, b)|+ |∆s

0(z, a)−∆s
0(z, b)|

(b)

≤nP |Ξ0(z, a)−Ξ0(z, b)|+
∑
e∈E

|Re,P (z, a)−Re,P (z, b)|. (146)

where Ξ0(·) and Re,T (·) are defined in Eqs. (50) and (51), respectively. Step (a) follows from the

design of our inspection policy, where each job that arrives to the Preparation stage adds nP new

inspections to W0(t). Step (b) is due to the fact that the number of initiated inspections during an

interval is no greater than the total number of times that an expert visits the Preparation stage

during the same period.

Recall that the average inspection rate, µ, is equal to 1 (Eq. (2)). Because ω ∈ C and lims→∞ zs =

∞, by Eqs. (50), (51) and (146), we have that there exists a positive sequence {εs}s∈N, with εs→ 0

as s→∞, such that for all s∈N and a, b∈ [0, T ], a > b,

|As
0(z, a)−As

0(z, b)| ≤np(a− b) + εs, (147)

|∆s
0(z, a)−∆s

0(z, b)| ≤qPm(a− b) + εs, (148)

|Ws
0(zs, a)−Ws

0(zs, a)| ≤(nP + qPm)(a− b) + εs. (149)

Recall that W0(0) = w(s) in the sth system, and lims→∞ zs
−1w(s) = w0. We invoke the following

variation of the Arzelà-Ascoli theorem (Lemma 6.3 of Ye et al. (2005)).

Lemma A.3 Fix T > 0. Let {fs(·)}s∈N a sequence of functions that satisfies
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1. sups∈N |fs(0)|<∞.

2. There exists a positive sequence {εs}s∈N with εs→ 0 as s→∞, such that

|fs(a)− fs(b)| ≤ c|a− b|+ εs, ∀a, b∈ [0, T ], s∈N. (150)

Then, there exists a c-Lipschitz function f∗(·), and an increasing sequence {sj}j∈N ⊂N, such that

lim
j→∞

∥∥fsj (t)− f∗(t)∥∥T = 0. (151)

Using Lemma A.3 and Eqs. (147) through (149), we have that there exist (nP + qPm)-Lipschitz

functions, a0(·), d0(·), and w0(·), and an increasing sequence {i0j}j∈N, such that

lim
j→∞

∥∥∥∥(W0,A0,∆0)
s
i0
j (zs

i0
j

, t)− (w0,a0,d0)(t)

∥∥∥∥
T

= 0. (152)

This shows that the sequence {(W0,A0,∆0)si(zsi , ·)}i∈N admits Lipschitz-continuous limit points.

We now repeat essentially the same argument for the workload in the Adaptive stage, and use a

diagonal argument to identify a family of nested sub-sequences along which the workload converges

coordinate-wise to a Lipschitz function. Fix k ∈ {1, . . . ,K}. We claim that

|As
k(a)−As

k(b)| ≤vδ

(
m+

∑
e∈E

|Re,P (a)−Re,P (b)|

)
, ∀a, b∈ [0, T ], a > b. (153)

To justify the above inequality, note that by Eq. (27), each job that arrives to the Adaptive stage

could add at most vδ inspections to the aggregate workload in the Adpative stage. Also, an arrival

to the Adaptive stage corresponds to a departure to the Preparation stage, and the number of

such departures during an interval is at most the number of times an expert visits the Preparation

stage,
∑

e∈E |Re,P (a)−Re,P (b)|, plus the number of experts who were already inspecting a job in

the Preparation stage prior to time t= a, which is at most m. This yields Eq. (153). Analogous to

Eq. (146), we have that

|Ws
k(z, a)−Ws

0(z, b)| ≤nP |As
k(z, a)−As

k(z, b)|+ |∆s
k(z, a)−∆s

k(z, b)|

≤γδ

(
m

z
+
∑
e∈E

|Re,P (z, a)−Re,P (z, b)|

)
+
∑
e∈E

|Re,A(z, a)−Re,A(z, b)|. (154)

Using the fact that ω ∈ C, lims→∞ zs =∞, and Eqs. (51) and (154), we have that there exists a

positive sequence {εs}s∈N, with lims→∞ εs = 0, such that, for all s∈N and a, b∈ [0, T ], a > b,

|As
k(z, a)−As

k(z, b)| ≤vδqPm(a− b) + εs, (155)

|∆s
k(z, a)−∆s

k(z, b)| ≤qAm(a− b) + εs, (156)

|Ws
k(zs, a)−Ws

k(zs, b)| ≤(vδq
P + qA)m(a− b) + εs. (157)

Using Eq. (157) and the same argument involving Lemma A.3 as before, we have that there exist
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1. a collection of coordinate-wise (vδq
P + qA)m-Lipschitz functions, {(wk,ak,dk)}k∈K, and

2. a family of sequences, {{ikj}j∈N}k∈K, where {ikj} is a sub-sequence of {ik−1
j } for all k ∈K, and

{i0j} was defined in Eq. (152),

such that

lim
j→∞

∥∥∥∥(Wk,Ak,∆k)
s
ik
j (zs

ik
j

, t)− (wk,ak,dk)(t)

∥∥∥∥
T

= 0, ∀k ∈ {1, . . . , cK}. (158)

Because the sequences, {ikj}k∈K, are nested, by setting k = cK, the above equation further implies

that

lim
j→∞

∥∥∥∥(W,A,∆)
s
i
cK
j (zs

ik
j

, t)− (w,a,d)(t)

∥∥∥∥
T

= 0, (159)

Note that, by construction, all coordinates of (w,a,d) are Lipschitz-continuous, with a Lipschitz

constant of c = [qA + (vδ + 1)qP ]m + nP . We complete the proof of Proposition 8.7 by setting

{ij}j∈N = {icKj }j∈N. Q.E.D.

A.7. Proof of Lemma 8.9

Proof. The general strategy of our proof is to relate the behavior of Bs
h(·) to the number of

initiated inspections in the Preparation stage, ∆s
0(·), while being cautious of the fact that the lengths

of inspections are random and can cause the order of job departures from the Preparation stage to

be different from that of the arrivals. Let Bs(t) = |Bs(t)|. Fix t∈ (0, T ) and t′ ∈ (t, T ). We first show

that the following property holds:∣∣(Bs(t′)−Bs(t))− (∆s
0(t′)−∆s

0(t))/nP
∣∣≤ 2m. (160)

In words, this means that the number of jobs that enter the Adaptive stage during the interval (t, t′]

multiplied by nP deviates from the number of initiated inspections during the same period by at

most 2mnP .

To prove Eq. (160), recall that each job must receive nP inspections in the Preparation stage

before it moves to the Adaptive stage, and hence having (∆s
0(t′)−∆s

0(t)) initiated inspections means

that there could be at most d(∆s
0(t′)−∆s

0(t))/nP e+m jobs arriving at the Adaptive stage during

(t, t′], where the addition of m captures the possibility that all m servers were processing a job from

the Preparation stage at the start of the interval, t. This shows that

(Bs(t′)−Bs(t))− (∆s
0(t′)−∆s

0(t))/nP ≤m+ 1≤ 2m. (161)

We next invoke the following fact:

Lemma A.4 Fix x ∈ N and an interval J ⊂ R+. If there are x inspections initiated in the Prepa-

ration stage during J , then there are at least (x/nP −m) jobs departing from the Preparation stage

during J .
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Proof. Denote by I ′ the set of jobs who have had any inspection initiated during the interval

J . We partition I ′ into I ′0 ∪ I ′1, where I ′0 corresponds to those jobs who have departed from the

Preparation stage by the end of J , and I ′1 to those who have not. Because the experts perform

inspections in a first-come-first-server manner, a job cannot start receiving inspections until all nP

inspections for the previous job have been initiated. Since there are m experts, this implies that at

any point in time, there can be at most m jobs in the Preparation stage who have initiated any

inspection, and therefore

|I ′1| ≤m. (162)

Recall that x is the total number of initiated inspections in the Preparation stage during J . We

have that

x
(a)

≤ nP |I ′|= nP (|I ′0|+ |I ′1|)
(b)

≤ nP (|I ′0|+m), (163)

where step (a) follows from the fact that each job can lead to at most nP inspections, and step (b)

from Eq. (162). This yields

|I ′0| ≥ x/nP −m. (164)

That is, there are at least (x/nP −m) jobs departing from the Preparation stage during J . Q.E.D.

We now apply Lemma A.4 with x= (∆s
0(t′)−∆s

0(t)), and obtain

Bs(t′)−Bs(t)≥ (∆s
0(t′)−∆s

0(t))/nP −m, (165)

or

(Bs(t′)−Bs(t))− (∆s
0(t′)−∆s

0(t))/nP ≥−m, (166)

which, combined with Eq. (161) leads to Eq. (160).

To prove the main claim of Lemma 8.9, we will invoke the functional law of large number on

the sequence of ML estimators, {ĤP
i }i∈N, as expressed in Eq. (52). However, we have to be careful

in doing so: the jobs that depart from the Preparation stage do not necessarily preserve the order

in which they arrived to the system, since the lengths of inspections in the Preparation stage are

random and can potentially cause a job to depart earlier than another with a smaller index. Thus,

we begin by showing that such “shuffling” is relatively minor and can essentially be ignored when

studying the local behavior of Bs
h(·). This is formalized in the next lemma, which states that the

set Bs(t′)\Bs(t) can be “sandwiched” by two intervals of consecutive integers that differ by no more

than 2m elements from one another. The use of consecutive integers will allow us to invoke the law

of large numbers with greater ease.
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We will adopt the following short-hand notation. For a set-valued process {S(t)}t∈R+
, and t, t′ ∈

R+, we will denote by S(t′\t) the difference between S(t′) and S(t):

S(t′\t) 4= S(t′)\S(t). (167)

For a, b ∈N, we will use {a→ b} to denote the set of consecutive integers {a,a+ 1, . . . , b}, if a≤ b,

and ∅, otherwise. We have the following lemma.

Lemma A.5 Fix t, t′ ∈ R+, t′ > t. There exist a,a′, b and b′ ∈ N, with max{|a− a′|, |b− b′|} ≤m,

such that

{a→ b} ⊂ Bs(t′\t)⊂ {a′→ b′}. (168)

It follows that ∣∣(b− a)− |Bs(t′\t)|
∣∣≤ 2m, and

∣∣(b′− a′)− |Bs(t′\t)|∣∣≤ 2m. (169)

Proof. Denote by Ds(t) the set of jobs in the Preparation stage for whom at least one inspection

has been initiated by time t. Because a job can depart from the Preparation stage only after

completing nP inspections, we have

Bs(t)⊂Ds(t), ∀t∈R+. (170)

On the other hand, the initiations of inspections in the Preparation stage are performed in a first-

come-first-serve (FCFS) manner. Recall also that at any given point in time there can be at most

m experts performing inspections. Combining the above two facts, we know that an inspection for

job i+m can be initiated only after all jobs prior to, and including, job i have departed from the

Preparation stage. We thus have that

{1→maxDs(t)−m} ⊂ Bs(t), ∀t∈R+. (171)

where maxDs(t) is the index of the last job in Ds(t). Combining Eqs. (170) and (171), we have

Bs(t′\t)⊃ {1→maxDs(t′)−m}\Ds(t), (172)

Bs(t′\t)⊂ Ds(t′)\{1→maxDs(t)−m} (173)

Finally, the above-mentioned FCFS property of the inspection initiation rule further implies that

Ds(t) is a set of consecutive positive integers. Therefore, it follows that the right-hand sides of

Eqs. (172) and (173) are both intervals of consecutive integers. We can prove Eq. (168) by setting

{a→ b}={1→maxDs(t′)−m}\Ds(t), (174)

{a′→ b′}=Ds(t′)\{1→maxDs(t)−m}, (175)
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or, equivalently, that

a=maxDs(t) + 1, a′ = maxDs(t) + 1−m

b=maxDs(t′)−m+ 1, b′ = maxDs(t′) + 1 (176)

and it is clear from the above equations that max{|a−a′|, |b− b′|} ≤m. For Eq. (169), note that by

the ordering in Eq. (168) and the triangle inequality, we have∣∣(b− a)− |Bs(t′\t)|| ≤
∣∣(b′− a′)− (b− a)| ≤ 2max{|a− a′|, |b− b′|} ≤ 2m, (177)

and a similar argument shows
∣∣(b′− a′)− |Bs(t′\t)|| ≤ 2m. This proves Lemma A.5. Q.E.D.

We are now ready to prove the main claim of Lemma 8.9. Fix t∈ (0, T ) and ε > 0. Let a,a′, b and

b′ be defined as in Lemma A.5, corresponding to the set Bsj (zj(t+ ε)\zjt), all of which depend on

j and ε, though we will suppress the dependencies in our notation for simplicity. We have that, for

every sufficiently small δ′ > 0, there exists j∗ > 0, such that for all j > j∗,

B
s̄j
h (z̄j, t+ ε)−Bs̄j

h (zs̄j , t)

ε
=
B
s̄j
h (z̄j(t+ ε))−Bs̄j

h (zs̄j t)

εzj

=
1

εzj

∑
i∈Bsj (zj(t+ε)\zjt)

I(ĤP
i = h)

(a)

≥ 1

εzj

b∑
i=a

I(ĤP
i = h)

(b)

≥ 1

εzj

a+(B
sj (zj(t+ε)−B

sj (zjt))−2m∑
i=a

I(ĤP
i = h)

(c)

≥ 1

εzj

a+(∆
sj
0 (zj(t+ε)−∆

sj
0 (zjt))/n

P−4m∑
i=a

I(ĤP
i = h)

(d)

≥ 1

εzj

a+(d0(t+ε)−d0(t)−δ)zj/nP−4m∑
i=a

I(ĤP
i = h)

(e)

≥ πPh
εnP

(d0(t+ ε)−d0(t)− 2δ′)

=
πPh
nP
· d0(t+ ε)−d0(t)− 2δ′

ε
. (178)

Step (a) follows from Eq. (168) of Lemma A.5, and step (b) from the first inequality in Eq. (169)

in the same lemma. Step (c) is a consequence of |(Bs(t′)−Bs(t))− (∆s
0(t′)−∆s

0(t))/nP | ≤ 2m

(Eq. (160)). Step (d) follows from the uniform convergence of ∆
sj
0 (·) to d0(·) over [0, T ]. Finally,

step (e) is based on the functional law of large number for the sequence {ĤP
i }i∈N (Eq. (52)).

Since Eq. (178) holds for all sufficiently small δ′ > 0, we have that

lim
ε↓0

lim
j→∞

B
s̄j
h (z̄j, t+ ε)−Bs̄j

h (zs̄j , t)

ε
≥ lim

ε↓0
lim
j→∞

lim
δ′↓0

πPh
nP
· d0(t+ ε)−d0(t)− 2δ′

ε
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=
πPh
nP

ḋ0(t)

=


mqP

nP
πPh , if w0(t)> 0,

πPh , if w0(t) = 0,

(179)

A line of argument identical to Eqs. (178) through (179) shows the other direction of the inequality,

namely, that limε↓0 limj→∞
B
s̄j
h

(z̄j ,t+ε)−B
s̄j
h

(zs̄j ,t)

ε
≤ πPh

nP
ḋ0(t). This completes the proof of Lemma 8.9.

Q.E.D.

A.8. Proof of Lemma 8.10

Proof. We first state a useful technical lemma. The proof makes use of Berge’s maximum theorem

concerning the continuity of optimal solutions to a convex optimization problem.

Lemma A.6 Fix h∈H and w ∈RcK+1
+ . The set-valued function, N ∗h (·), satisfies the following semi-

continuity property. For every δ > 0, there exists ε > 0 such that, for all w′ ∈RcK+1
+ , ‖w′−w‖2 ≤ ε,

sup
x∈N∗

h
(w′)

inf
y∈N∗

h
(w)
‖x− y‖2 ≤ δ. (180)

Proof. The set Nh(·) represents the set of feasible solutions of the linear optimization problem

defined in Eq. (24). We first invoke Berge’s maximum theorem (pp. 116 of Berge (1963)), which

roughly states that Nh(·) depends semi-continuously in its argument. More specifically, it is easy

to verify that the set, Nh, is compact (Eq. (25) to (27)), and the objective function is continuous.

Berge’s maximum theorem thus implies that N ∗h (·) is upper-hemicontinuous at w, in the following

sense: let {wn}n∈N be a sequence, where wn → w as n→∞, and {λn}n∈N be a sequence where

λn ∈N ∗h (wn) for all n∈N. Then, if λn→ λ as n→∞, we have that λ∈N ∗h (w).

We now use the above upper hemicontinuity property, along with the boundedness of the con-

straint set,Nh, to prove our claim. Suppose, for the sake of contradiction, that there exists a sequence

{wn}n∈N with limn→∞wn = w, such that

lim inf
n→∞

sup
x∈N∗

h
(wn)

inf
y∈N∗

h
(w)
‖x− y‖2 > 0. (181)

This implies the existence of a sequence {λn}n∈N, with λn ∈N ∗h (wn) for all n∈N, such that

lim inf
n→∞

inf
y∈N∗

h
(w)
‖λn− y‖2 > 0. (182)

By definition, for every w, the coordinates of the elements of N ∗h (w) are non-negative and bounded

from above by vδ. Therefore, by sequential compactness, there exist λ ∈RcK+1
+ and a sub-sequence

of {λn}, {λnk}k∈N, such that limk→∞ λnk = λ. By Eq. (182), we have that

inf
y∈N∗

h
(w)
‖λ− y‖2 > 0. (183)
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This contradicts with the hemicontinuity of N ∗h (·), which would imply that λ ∈ N ∗h (w), and thus

proves Lemma A.6. Q.E.D.

We now return to the proof of Lemma 8.10. Fix ε∈ (0, T − t). We first observe that the set N ∗h (·)

is scale-invariant, in the sense that for every w ∈RcK+1
+

N ∗h (aw) =N ∗h (w), a > 0. (184)

Therefore,

N ∗h (Ws(zt)) =N ∗h (z−1Ws(zt)) =N ∗h (Ws(z, t)), (185)

Recall that Wsj (z̄j, ·) converges uniformly over [0, T ] to w(·) as j → ∞, and that w(·) is a

continuous function. These two facts, along with the semi-continuity property of Lemma A.6, imply

that for every δ > 0, there exist ε, j∗ > 0, such that for all j ≥ j∗

inf
y∈N∗

h
(w(t))

‖λ− y‖2 ≤ δ, ∀t′ ∈ (t, t+ ε], λ∈N ∗h (Ws̄j (z̄j, t
′)). (186)

Note that all jobs in the set Bs̄jh (z̄j(t+ ε)\z̄jt) arrived during the interval (z̄jt, z̄j(t+ ε)]. Therefore,

for all i∈Bs̄jh (z̄j(t+ ε)\z̄jt), there exists t′ ∈ (t, t+ ε], such that

Λi ≤N ∗h (Ws̄j (z̄j, t
′)), (187)

where the inequality follows from round-down procedure in Eq. (30).

Combining Eqs. (186) and (187), we conclude that for every δ > 0, there exist ε∗, j∗ > 0, such that

for all j ≥ j∗, ε < ε∗,

inf
y∈N∗

h
(w(t))

max
k∈K

(Λi,k− yk)≤ δ, ∀i∈B
s̄j
h (z̄j(t+ ε)\z̄jt). (188)

Since the above inequality holds for all jobs in Bs̄jh (z̄j(t+ ε)\z̄jt), it further implies that the average

workload among the jobs in Bs̄jh (z̄j(t+ ε)\z̄jt) satisfies:

inf
y∈N∗

h
(w(t))

max
k∈K

(
Λh,k(t, ε, j)− yk

)
≤ δ. (189)

Because the above inequalities hold for all δ > 0, we conclude that

limsup
ε↓0

limsup
j→∞

inf
y≤N∗

h
(w(t))

‖Λh(t, ε, j)− y‖2 = 0. (190)

This completes the proof of Lemma 8.10. Q.E.D.
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A.9. Proof of Proposition 8.11

Proof. Fix w0 ∈ RcK+1
+ such that L(w0) = 1, and a fluid solution w ∈W(w0). Fix t ∈ (0, T ) to

be a point where all coordinates of w(·), a(·), and d(·) are differentiable. We have, by the chain rule

of differentiation,

d

dt
L(w(t)) =

d

dt

√√√√ cK∑
k=0

wk(t)2

=‖w(t)‖−1/2
2

(
cK∑
k=0

wk(t)ẇk(t)

)

=‖w(t)‖−1/2
2

(
w0(t)ẇ0(t) +

∑
k∈K

wk(t)ẇk(t)

)
. (191)

We next inspect separately at the two terms in the parentheses in Eq. (191). For the first term,

corresponding to the workload in the Preparation stage, we have

w0(t)ẇ0(t) = w0(t)(ȧ0(t)− ḋ0(t))
(a)
= w0(t)(nP −mqP ) =−w0(t)c̃, (192)

where we define c̃ 4=mqP −nP > 0, and step (a) follows from the definition of a fluid solution.

We now analyze the second term, which corresponds to the workloads in the Adaptive stage.

Recall that Nh is the set of vector satisfying Eqs. (25) through (27). Fix c2 > 0. We will define the

following linear program, which we refer to as LP2:

minimize m (193)

s.t. (1 + ln−1(1/δ))
∑
h∈H

nh,kπ
P
h ≤ rkm− c2, ∀k ∈K, (194)

{nh,k}k∈K ∈Nh, ∀h∈H, (195)

We will denote by m∗2 the optimal value of LP2. For the remainder of the proof, we will assume

that

mqA >m∗2, (196)

and demonstrate that (1) Eq. (70) holds whenever the above inequality is true, and (2) the value

of m∗2 is not far from the optimal solution to FLP.

From the definition of a fluid solution, we know that

ḋk(t) = rkmq
A, if wk(t)> 0, (197)

and

{ȧk(t)}k∈K ≤ (1 + ln−1(1/δ))
∑
h∈H

πPhN ∗h (w(t)). (198)
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For concreteness, we can write

{ȧk(t)}k∈K = (1 + ln−1(1/δ))
∑
h∈H

πPn n
∗
h,k, (199)

for some {n∗h,k}h∈H,k∈K, where {n∗h,k}k∈K ≤N ∗h (w(t)) for all h∈H. We have that∑
k∈K

wk(t)ẇk(t) =
∑
k∈K

wk(t)(ȧk(t)− ḋk(t))

=
∑
k∈K

wk(t)

[
(1 + ln−1(1/δ))

∑
h∈H

πPh n
∗
h,k− rkmqA

]

=
∑
h∈H

πPh

[
(1 + ln−1(1/δ))

∑
k∈K

wk(t)n
∗
h,k−

∑
k∈K

wk(t)rkmq
A

]
, (200)

where the last step follows from the fact that
∑

h π
P
h = 1. Because mqA >m∗2, the value mqA must

belong to some feasible solution of LP2. By the first constraint of LP2 in Eq. (194), this implies

that there exists {nh,k}h∈H,k∈K, where {nh,k}k∈K ∈Nh for all h∈H, such that

rkmq
A ≥ c2 + (1 + ln−1(1/δ))

∑
h∈H

πPh nh,k, ∀k ∈K. (201)

We thus have that∑
k∈K

wk(t)rkmq
A ≥

∑
k∈K

wk(t)
(
c2 + (1 + ln−1(1/δ))

∑
h∈H

πPh nh,k
)

=c2

∑
k∈K

wk(t) + (1 + ln−1(1/δ))
∑
h∈H

πPh

(∑
k∈K

wk(t)nh,k

)
. (202)

Substituting the above inequality into Eq. (200), we have that∑
k∈K

wk(t)ẇk(t)≤− c2

∑
k∈K

wk(t) + (1 + ln−1(1/δ))
∑
h∈H

πPh

(∑
k∈K

wk(t)n
∗
h,k−

∑
k∈K

wk(t)nh,k

)
≤− c2

∑
k∈K

wk(t), (203)

where the last inequality follows from the fact that {n∗h,k}k∈K ≤N ∗h (w(t)), and hence∑
k∈K

wk(t)n
∗
h,k ≤ min

{nk}k∈K

∑
k∈K

wk(t)nk. (204)

Substituting Eqs. (192) and (203) into Eq. (191), we have that

d

dt
L(w(t))=‖w(t)‖−1/2

2

(
w0(t)ẇ0(t) +

∑
k∈K

wk(t)ẇk(t)

)

≤−min{c̃, c2}‖w(t)‖−1/2
2

(
cK+1∑
k=0

wk(t)

)
(a)

≤ −min{c̃, c2}‖w(t)‖−1/2
2 ‖w(t)‖2

=−min{c̃, c2}
√
L(w(t)) (205)
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where in step (a) we used the elementary inequality:
∑n

i=1 xi ≥
√∑n

i=1 x
2
i , ∀(x1, . . . , xn)∈Rn+.

Recall that all coordinates of w(·),a(·) and d(·) are differentiable for almost all t∈ (0, T ). Eq. (205)

thus implies that L(w(t)) is strictly decreasing whenever w(t) 6= 0. It follows that if L(w(0)) = 1,

then, for every t∈ (0, T ), either L(w(t))≤ 1/4, or L(w(s))> 1/4 for all s∈ [0, t]. In the latter case,

we have

L(w(t))≤ 1−min{c̃, c2}
∫ t

1

√
L(w(s))ds≤ 1− min{c̃, c2}

2
t. (206)

Setting the right-hand side of the above equation to 1/4, we conclude that if

ε′ =
3

4
and τ =

3

2min{c̃, c2}
, (207)

then

L(w(τ))≤ 1− ε′, whenever L(w(0)) = 1. (208)

Therefore, we have shown that the contraction property of Eq. (70) holds, whenever

mqP >nP , and mqA >m∗2. (209)

To complete the proof, it remains to relate the optimal value of LP2, m∗2, to that of the the optimal

value of FLP. This is accomplished in the following lemma, whose proof is given in Appendix A.12.

Lemma A.7 Let m∗F and m∗2 be the optimal values of FLP and LP2, respectively, and c2 be defined

as in LP2. For every ε > 0, there exist c′ > 0, such that if c2 < c
′, then

m∗2 ≤
(

1 +
ln(2cH) + gδ

ln(1/δ)

)(
1 + εP

cHd

dr

)
(1 + ln−1(1/δ))m∗F + ε. (210)

The proof of Proposition 8.11 is completed by recalling from Proposition 8.2 that

εP ≤ 2cH/ ln(1/δ), (211)

and by choosing a sufficiently small ε in Lemma A.7. Q.E.D.

A.10. Proof of Proposition 9.1

Proof. We first look at the macro-level arrival primitive associated with the Residual stage.

The arrivals to the Residual stage are jobs leaving the Adaptive stage who have failed to meet the

criterion for exiting the system in Eq. (31). If the Preparation and Adaptive stages are stable, the

job arrival process to the Residual stage is generated according to a Markov modulated Poisson

process (MMPP), modulated by a stable countable-state Markov process that corresponds to the

dynamics of Preparation and Adaptive stages, {I(t),{Yi(t)}i∈I(t)}t∈R+
, defined in Section 8.2. Using

an elementary application of the Foster-Lyapunov criteria, it is thus not difficult to show that the

Residual stage is stable whenever the following rate condition holds: the average rate of inspections
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from the MMPP should be less than the service rate of the Residual stage. In the remainder of the

proof, we verify that this is indeed the case.

Recall that ĤP
i is the ML estimator job i obtains from the inspections in the Preparation stage.

We say that job i is “good”, if ĤP
i happens to be equal to the true label, Hi, and “bad”, otherwise.

The next result states that most of the good jobs will be able to depart from the system after being

processed in the Adaptive stage, and hence not enter the Residual stage. Denote by SAi (h, l) the

value of Si,t(h, l) when job i exits the Adaptive stage, and define the event

BA = {∃h′ ∈H, s.t. SAi (h′, l)≥ ln(2cH/δ), ∀l ∈H, l 6= h′}. (212)

We have the following lemma, whose proof is given in Appendix A.13.

Lemma A.8 Fix i∈N. There exists δ0 > 0, independent of π, such that

P
(
BA
∣∣ ĤP

i =Hi = h
)
≥ 1− cH ln−1(1/δ), ∀h∈H, (213)

for all δ ∈ (0, δ0).

By Proposition 8.2, we have that at least a (1− 2cH ln−1(1/δ)) fraction of all jobs are good when

exiting the Preparation stage. By Lemma A.8, each one of these good jobs has a probability of at

most cH ln−1(1/δ) for entering the Residual stage. By assuming that all bad jobs eventually enter

the Residual stage, the above reasoning shows that the arrival rate of jobs to the Residual stage,

λR, satisfies

λR ≤ 2cH ln−1(1/δ) + cH ln−1(1/δ) = 3cH ln−1(1/δ). (214)

In terms of service speed, recall that each job requires nR inspections in the Residual stage, and the

experts visit the Residual stage at the rate of mqR. Hence, by Eq. (214), it suffices to have

mqR >3cH ln−1(1/δ)nR

=3cH ln−1(1/δ)ζ0 ln(4cH/δ)

=3cHζ0(1 + ln(4cH) ln−1(1/δ)). (215)

This proves Proposition 9.1. Q.E.D.

A.11. Proof of Proposition 10.1

Proof. Recall that there are only two ways through which a job could depart from the system:

either from the Adaptive stage, or the Residual stage. Fix i∈N and h∈H. Denote by SAi (h, l) the

value of Si,t(h, l) at the time job i completes all inspections in the Adaptive stage, and by ĤR
i the

maximum likelihood estimator of Hi using only the inspections in the Residual stage.
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Recall the event BA defined in Eq. (212) in Appendix A.10, i.e., whether job i will go through the

Residual stage, and denote by BA its compliment. We have that:

P(Ĥi 6= h
∣∣Hi = h) =P(Ĥi 6= h,BA

∣∣Hi = h) +P(Ĥi 6= h,BA
∣∣Hi = h)

=P(Ĥi 6= h,BA
∣∣Hi = h) +P(Ĥi 6= h

∣∣BA,Hi = h)P(BA
∣∣Hi = h)

(a)
=P(Ĥi 6= h,BA

∣∣Hi = h) +P(ĤR
i 6= h

∣∣BA,Hi = h)P(BA
∣∣Hi = h)

≤P(Ĥi 6= h,BA
∣∣Hi = h) +P(ĤR

i 6= h
∣∣BA,Hi = h), (216)

where step (a) follows from the definition of the inspection policy, where a job will be sent to the

Residual stage if and only if the event BA does not occur. The two terms on the right-hand-side of

Eq. (216) correspond to the classifications made by the Adaptive and Residual stages, respectively.

By noting that the total number of inspections by job i by the time it exits the Adaptive stage is

a stopping time with respect to the past inspections, applying Lemma A.1, with x= ln(2cH/δ), we

have that

P(Ĥi 6= h,BA
∣∣Hi = h)≤ δ/2. (217)

Now suppose that job i exits the system after having gone through the Residual stage. Recall

that by construction, the Residual stage employs an inspection procedure that is the same as the

Preparation stage, except for having a larger number of inspections per job. Therefore, using an

essentially identical line of arguments to that of Proposition 8.2, and, in particular, to the portion

of the proof leading to Eq. (144), by replacing the quantity ln ln(1/δ) with ln(2cH/δ), we can show

that

P(ĤR
i 6= h

∣∣BA,Hi = h)≤ δ/2. (218)

Substituting Eqs. (217) and (218) into Eq. (216) completes the proof of Proposition 10.1. Q.E.D.

A.12. Proof of Lemma A.7

Proof. Let (m∗F ,{n∗h,k}) be an optimal solution to FLP that satisfies the conditions stated in

Lemma 7.3. Define

φδ = 1 + (ln(2cH) + gδ)ln
−1(1/δ), (219)

and let

ñh,k = n∗h,kφδ. (220)

Recall from the definition in Eq. (29) that

vδ = 2d−1 ln(1/δ)[1 + (ln(2cH) + gδ)ln
−1(1/δ)] = 2d−1 ln(1/δ)φδ, (221)
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which implies, by Eq. (38) of Lemma 7.3, that
∑

k∈K ñh,k ≤ vδ for all h∈H. We thus conclude that

the variables {ñh,k} satisfy the second set of constraints of LP2, i.e.,

{ñh,k} ∈Nh, ∀h∈H. (222)

We now derive a sufficient condition on m̃ so that (m̃,{ñh,k}) is a feasible solution to LP2. Fixing

k ∈K, we have that

∑
h∈H

ñh,kπ
P
h =φδ

∑
h∈H

n∗h,kπ
P
h

(a)

≤φδ

(∑
h∈H

n∗h,kπh + εP
∑
h∈H

n∗h,k

)
(b)

≤φδ

(∑
h∈H

n∗h,kπh + εP cHd
−1 ln(1/δ)

)
(c)

≤φδ

(∑
h∈H

n∗h,kπh + εP cHd
−1dm∗F

)
(d)

≤φδ
(
m∗F rk + εP cHd

−1dm∗F
)
. (223)

Step (a) follows from Proposition 8.2, (b) and (c) from Lemma 7.3, and (d) from the constraint

of FLP in Eq. (34). To satisfy the first constraint of LP2, it suffices to let the right-hand side of

Eq. (223) satisfy

φδ
(
m∗F rk + εP cHd

−1dm∗F
)
≤ rkq

Am̃− c2

1 + ln−1(1/δ)
. (224)

That is, if

m̃qA ≥m∗Fφδ
(

1 + εP
cHd

dr

)
(1 + ln−1(1/δ)) +

c2

r
, (225)

then ∑
h∈H

ñh,kπ
P
h ≤ rkqAm̃− c2, ∀k ∈K, (226)

which, in light of the fact that {ñh,k}k∈K ∈ Nh for all h ∈ H, further implies that (m̃,{ñh,k}) is a

feasible solution of LP2. Therefore, we conclude that, for all c2 > 0,

m∗2 ≤m∗Fφδ
(

1 + εP
cHd

dr

)
(1 + ln−1(1/δ)) +

c2

r

=m∗F

(
1 +

ln(2cH) + gδ
ln(1/δ)

)(
1 + εP

cHd

dr

)
(1 + ln−1(1/δ)) +

c2

r
, (227)

We complete the proof of Lemma A.7 by letting c′ = εr. Q.E.D.
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A.13. Proof of Lemma A.8

Proof. The proof follows similar steps as those in the proof of Lemma A.2. Fix h ∈ H and

{λi,k}k∈K ∈ZcK+ . Denote by B the event

B= {ĤP
i =Hi = h, {Λi,k}k∈K = {λi,k}k∈K} (228)

For the remainder of the proof, we will assume that h ∈H and {λi,k}k∈K are such that P(B)> 0.

We will index all inspections received by job i in the Adaptive stage in an arbitrary fashion, and

denote by Kn the type of the expert who performed the nth inspection for job i, and by Zn(·, ·,Kn)

the corresponding log-likelihood ratio. Define Λi =
∑

k∈KΛi,k. For all l ∈H, l 6= h, let

M l
n =

n∨Λi∑
s=1

Zs(h, l,Ks)−D(h, l,Ks), n∈N, (229)

and M l
0 = 0. It is not difficult to see that, conditional on the true label of job i being h, the

summands in the above equation have zero mean and are independent. Therefore, one can verify

that {M l
n

∣∣B}n∈Z+
is a martingale.

Define

φδ = 1 + (ln(2cH) + gδ)ln
−1(1/δ), (230)

By the construction of {Λi,k}k∈K (Eq. (30)), we know that

Λi ≤
∑
k∈K

nk ≤ vδ = 2φδd
−1 ln(1/δ). (231)

By Eq. (25), we know that if

M l
Λi
−M l

0 >−gδ + cKd, (232)

then

SAi (h, l)> ln(2cH/δ), (233)

where the term cKd captures the potential discrepency induced by the rounding in Eq. (30). We

have that

P
(
SAi (h, l)≤ ln(2cH/δ)

∣∣B)=P
(
M l

Λi
−M l

0 ≤−(gAδ − cKd)
∣∣B)

(a)

≤ exp

(
−(gδ − cKd)2

4z2Λi

)
(b)

≤ exp

(
− (gδ)

2− 2gδcKd

8z2d−1φδ ln(1/δ)

)
. (234)

Step (a) follows from the Azuma-Hoeffding’s Inequality (Lemma C.1 in Appendix C), and noting

that |M l
n−M l

n−1| ≤ 2z for all n∈N. Step (b) follows from Eq. (231).
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Recall that gδ = 3zd−1/2
√

ln(1/δ) ln ln(1/δ). The exponent in Eq. (234) can be further expanded

as:

− (gδ)
2− 2gδcKd

8z2d−1φδ ln(1/δ)
=− 9z2d−1 ln(1/δ) ln ln(1/δ)

8z2d−1φδ ln(1/δ)
+

6zd−1/2cKd
√

ln(1/δ) ln ln(1/δ)

8z2d−1φδ ln(1/δ)

=− 9 ln ln(1/δ)

8φδ
+

3d−3/2cKd

4z

√
ln ln(1/δ)

ln(1/δ)
. (235)

As δ ↓ 0, we have that φδ = 1 + (ln(2cH) + gδ)ln
−1(1/δ)→ 1, and

√
ln ln(1/δ)

ln(1/δ)
→ 0. Therefore, the

above expression yields5

− (gδ)
2− 2gδcKd

8z2d−1φδ ln(1/δ)
∼−9 ln ln(1/δ)

8
, as δ→ 0. (236)

Substituting Eq. (236) into Eq. (234), we know that there exists δ0 > 0, independent of the prior

distribution, π, and the choice of l and h, such that for all δ ∈ (0, δ0),

P
(
SAi (h, l)≤ ln(2cH/δ)

∣∣B)≤ exp

(
− (gδ)

2− 2gδcKd

8z2d−1φδ ln(1/δ)

)
=exp

(
−9 ln ln(1/δ)

8φδ
+

3d−3/2cKd

4z

√
ln ln(1/δ)

ln(1/δ)

)
≤ exp(− ln ln(1/δ))

= ln−1(1/δ). (237)

Since the above inequalities hold for all h, l ∈H, l 6= h, and {λi,k}k∈K, we can apply a union bound

over l and conclude that, for all h∈H,

P(BA
∣∣ ĤP

i =Hi = h)≥P
(
SAi (h, l)≥ ln(2cH/δ), ∀l 6= h

∣∣ ĤP
i =Hi = h

)
≥ 1− cH ln−1(1/δ). (238)

This completes the proof of Lemma A.8. Q.E.D.

Appendix B: Some Properties of L(·)

The following lemma states some basic properties of the Lyapunov function, L(·).

Lemma B.1 The function L(w) = ‖w‖2 admits the following properties: (1) L is continuous on

RcK+1
+ ; (2) For all c ∈ R+ and w ∈ RcK+1

+ , we have L(cw) = cL(w); (3) There exists positive con-

stants, α1, α2 > 0, such that for all w ∈RcK+1
+ ,

α1‖w‖∞ ≤L(w)≤ α2‖w‖∞, (239)

where ‖ · ‖∞ is the l∞ norm, ‖w‖∞ = maxk=0,...,cK+1 |wk|.

5 The notation f(x)∼ g(x) means that limx→0
f(x)
g(x)

= 1.
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Proof. The first two properties follow directly from the definition of L(·). For Eq. (239), we note

that for all w ∈RcK+1
+ ,

L(w)≥
√
‖w‖2∞ = ‖w‖∞,

L(w)≤
√

(cK+ 1)‖w‖2∞ =
√
cK+ 1‖w‖∞.

Hence, Eq. (239) holds for α1 = 1 and α2 =
√
cK+ 1. Q.E.D.

Appendix C: The Azuma-Hoeffding Inequality

We will make use of the standard Azuma-Hoeffding inequality (Section 12.2 of Grimmett and

Stirzaker (2001)), which we state below for completeness.

Lemma C.1 (Azuma-Hoeffding Inequality) Let {Mn}n∈Z+
be a martingale, and suppose that

there exists a> 0, such that |Mn−Mn−1| ≤ a for all n∈Z+. Then

P(Mn−M0 ≤−x)≤ exp

(
− x2

2na2

)
, ∀x∈R+. (240)

Appendix D: A Heuristic Policy

We discuss in this section a simple heuristic inspection policy, which essentially condenses the three-

stage architecture of Figure 1 into only one that resembles the Adaptive stage. We expect the policy

to be substantially easier to implement than the one presented in Section 6. Nevertheless, we have

not been able to establish its resource efficiency rigorously, though we discuss some indication that

it may be resource efficient as well.

For simplicity, we assume that D(h, l, k) > 0 for all k ∈ K, h 6= l, i.e., every expert is able to

distinguish any two job labels to some degree. Denote by Ĥi,t the ML estimator of job i’s type at

time t, and we assume that the value of Ĥi,t at the time when job i has just arrived to the system

is set to a value drawn uniformly at random from H. Denote by It the indices of all jobs that are

currently in the system at time t, and denote by Ih,t the subset containing those jobs whose ML

estimator is equal to h:

Ih,t = {i∈ It : Ĥi,t = h}. (241)

Define Wi,t(h, l) as the residual workload associated with job i:

Wi,t(h, l) = (ln(cH/δ)−Si,t(h, l))+
, h, l ∈H, (242)

and define the aggregate residual workload associated with job type h:

W t(h, l) =
∑
i∈Ih,t

Wi,t(h, l), h, l ∈H. (243)

The heuristic policy operates as follows.
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Departure rule. Job i departs from the system as soon as there exists h∈H, such that

max
l∈H,l 6=h

Wi,t(h, l) = 0. (244)

Expert actions. Suppose that an expert of type k becomes available at time t. If there is no job in

the system, she goes on a vacation. Otherwise, she inspects the oldest job from the set Ih∗,t, where

h∗ ∈ arg max
h∈H

∑
l∈H,l 6=h

D(h, l, k)W t(h, l), (245)

with ties broken arbitrarily.

This heuristic policy has a number of nice features. As is evident from the above description, the

policy is much simpler than the one given in Section 6, and it does not require solving a linear

optimization problem as a sub-routine. Also, the departure criterion ensures that the event Gx in

Lemma 5.1 always occurs for every job that leaves the system, so the policy is δ-accuracy whenever

it is stable. There is also some indication that this heuristic policy might be resource efficient. For

a moment, let us suppose that all ML estimators, Ĥi,t, are correct. In this case, Ih,t is the set

of jobs whose true label is h, and Eq. (245) can be thought of as a max-weight-like procedure,

where D(h, l, k) corresponds to the expected decrease a single inspection can incur on the aggregate

residual workload W t(h, l). Since max-weight scheduling policies (e.g., Tassiulas and Ephremides

(1992)) are known to achieve the maximum stability region in many queueing systems, one may

expect that this max-weight-like property would make our heuristic policy resource efficient as well.

Unfortunately, there appear to be two intrinsic characteristics of the policy that make it difficult

to rigorously establish resource efficiency. Firstly, the ML estimators Ĥi,t can be incorrect, especially

when a job has received only a small number of inspections, and therefore the vector {W t(h, l)}h,l∈H
does not exactly capture the “true” workload of the system. Secondly, even assuming that the ML

estimators are correct, a synchronization issue can prevent a type-k expert’s inspection from actually

contributing an expected D(h, l, k) units of decrease in W t(h, l) for all l 6= h. This is because, for

some job i, Wi,t(h, l) along some coordinate l could reach zero much earlier than other coordinates

l′ 6= l, during which period the expected decrease in W t(h, l) from inspecting job i would be zero,

instead of D(h, l, k), due to the capping at zero of Eq. (244). Both of the above issues make it

difficult to bound the drift in a Lyapunov function in the course of proving stability. However, there

is hope that they could be mitigated as the accuracy parameter, δ, tends to 0. In this regime, the

number of inspections needed for each job tends to infinity, and hence most jobs in the system

have already received a large number of inspections, implying that they likely have the correct ML

estimators as well. Similarly, since the distortion of drift only occurs at the “boundary” where the

residual workload of a job is small, it will likely have much less impact as the number of inspections

per job grows.
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